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Abstract
Engineering Systems & Design

Doctor of Philosophy

Efficiency, Regret and Inequality in Decentralised Systems

by Barnabé MONNOT

We consider systems where agents in a society choose actions from their strategy
sets and incur a cost. This cost depends not only on their own choices, but also on those
of other agents in the society. Guided by their own interests, agents at equilibrium
decide on strategies to minimise their individual cost given the actions of everyone
else. But a central planner can do better and select for each agent an action such that
the sum of costs in the society is minimised. The gap between this minimum and the
cost of the worst equilibrium is known as the Price of Anarchy (PoA).

Since its introduction by Koutsoupias and Papadimitriou (1999), PoA has stood as
the gold standard for system efficiency. Taken literally, PoA is a measure of the inef-
ficiency accruing to “anarchic” decentralisation. However, in many systems, mecha-
nisms exist to induce optimal equilibria, where the society incurs costs equal to those
it would incur under the governance of the central planner. This is a “designed” de-
centralisation, where a mechanism has modified the incentives and behaviour of the
agents. In that case, PoA is simply 1.

The present thesis investigates the ties between efficiency, regret and inequality in
decentralised systems. We exhibit four connected questions to conduct this investiga-
tion:

1. When optimal equilibria exist but inefficiency arises from the complexity of reach-
ing these equilibria, can a centralised authority help agents coordinate?

2. When agents follow no-regret learning dynamics and reaching a Nash equilib-
rium is hard, can we guarantee efficiency bounds of the limit states?

3. In a large, real system such as the Singapore transportation network, what are
data-driven proxies for the theoretically-defined notions of regret and PoA? Is
the latter as pessimistic in real life as its theoretical bounds predict?

4. When agents are endowed with initial wealth, how do mechanisms inducing op-
timal equilibria modify the distribution of wealth?
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“There is no central authority that designs, engineers and runs the Internet. But what if there
were such master puppeteer, a benevolent dictator who, for example, micromanaged its oper-
ation, allocating bandwidth to flows so as to maximize total satisfaction? How much better
would the Internet run? What is the price of anarchy?”

“Algorithms, Games and the Internet”, Christos Papadimitriou (2001)
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Chapter 1

Efficiency, regret and inequality in
decentralised systems

Complex societies are built on the interactions of agents striving to achieve their own
goals. Cities are a prime example: they work as a large meeting place for this multitude
of intersecting agents and they grow from resulting socio-economic products (Jacobs,
1961; West, 2017). In this context, it would be a Sisyphean task to plan for all these
interactions and optimise such that the society as a whole is in the best possible state it
can be, its social optimum (SO)—for some definition of “best”. The reason may only be
computational: finding out such a state potentially requires resources far greater than
will ever be available.

It is much easier to simply assume that each agent follows a plan of her own, guided
by her own motivations and hope that the aggregation of everyone’s individual deci-
sions will lead the whole system to a good state. Hayek (1945) thus explains the supe-
riority of decentralised decision-making, and exhumes “knowledge” as the key object
that underpins such systems. The planner may indeed never be able to possess “all
the knowledge which ought to be used but which is initially dispersed among many
different individuals”.1

What is the consequence of letting agents in the system do their own bidding? Peo-
ple do find their way on the complex routing network of large cities, and packets reli-
ably arrive at destination on the Internet, with no central planner showing the way for
everybody. But these two situations come with an important side effect: congestion.
Resources become slower to access as more agents employ them and negative external-
ities decrease the global welfare of the system. In other words, decentralisation leads
to inefficiency.

This is where, in Hayek’s words, the problem may reduce to “designing an efficient
economic system”. Smart tolling can guide the road network away from suboptimal
states (Fleischer, Jain, and Mahdian, 2004). Protocols such as TCP make the Internet

1As Mirowski and Nik-Khah (2018) note, since Hayek’s work, the word “knowledge” has become
problematic and later weaved into the concept of “information”, leading to some confusion. We revisit
some of these questions later in the thesis, especially in Chapter 3.
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robust to overly congested links (Cerf and Kahn, 1974). Both make use of “knowledge”:
the first in a fully decentralised manner, by setting the price of the toll to the marginal
cost of an additional driver employing the road, the second with clients observing the
number of packets they lose as they steadily increase their rate of emission.

How can we quantify how well these mechanisms perform? We first need a bench-
mark to evaluate them against. The Nash equilibrium (NE) (Nash, 1950), defined as
any state of the system where no agent could profitably change her decision if she was
the only one to do so, is a natural candidate. If we believe agents act out of their self-
interest, it appears reasonable to conclude that the logical endpoint of a system will be
a NE.

Understanding how much improvement is achieved with these mechanisms—or,
conversely, how much worse the system is without them—reduces to measuring the
gap between the worst of the NE in the system and its SO. This idea is formalised by
the price of anarchy (PoA), given by

Price of anarchy =
Cost(Worst Nash equilibrium)

Cost(Social optimum)

Since its introduction by Koutsoupias and Papadimitriou, 1999,2 a large literature
followed to analyse the PoA in various settings, e.g., congestion games modelling the
traffic on a road network or auctions and queues. Positive results were found, bound-
ing the PoA for congestion games with particular cost functions, independently of the
underlying network’s topology (Roughgarden, 2015). But as with any metric, it is not
an end-all.

First, as a predictive notion of system state, NE is a tough sell. It is in general not
unique, leading us to wonder how the game will play out and why some equilibrium
is reached instead of another. Even in systems where the social optimum is a Nash
equilibrium,3 this multiplicity can durably affect the costs of the agents. One natural
idea is to inject some centralisation, to allow coordination within the game. If agents
with limited knowledge are given an extra bit of information from a central messenger, can the
system be steered towards more efficient equilibria?

Second, it is computationally hard to even exhibit one instance of a NE in most set-
tings (Daskalakis, Goldberg, and Papadimitriou, 2006), a further argument that it may
not be sensible to expect convergence to such an equilibrium for most real systems.
That most learning dynamics do not in general converge to a NE was indeed known
(Shapley, 1964) and prompted the definition of weaker notions of equilibrium for which

2Under the name of “coordination ratio”, until it was retitled “price of anarchy” in Papadimitriou
(2001).

3In other words, a system where the price of stability, or ratio of the best equilibrium’s cost to the social
optimum, is 1 (Anshelevich et al., 2004).
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the play converges. One such definition is based on regret and expects agents to play
in order to minimise their own accumulated regret. If it is not clear that NE is a reason-
able outcome of the agents’ interactions, can we find better guarantees with a weaker concept of
equilibrium?

Let us assume for an instant that we have overcome the previous obstacles. We must
still consider whether PoA is an adequate predictive measure of system inefficiency.
Despite its extensive theoretical analysis for a variety of games, so far few attempts
have succeeded at properly estimating the value of PoA for a congestion game played
out in the real world, in part due to the lack of data granular enough to measure it.

Second, the notion of PoA is only meaningful if we believe our real system to be in
a Nash equilibrium. In the case NE is still too strong to observe empirically, it remains
possible that some measurement of regret from the data argues that the system has at
least reached a stable state.

There is a third difficulty. Low values of PoA may represent two opposite condi-
tions of the system—namely, a system with very light congestion or one with very high
congestion (Colini-Baldeschi et al., 2017). A central planner is not of much use if the
streets are empty, or, conversely, if they are in such a gridlock that all helpful links are
saturated. How does PoA hold up to empirical analysis of its measurement in a real instance
of a routing game?

A broader criticism of the emphasis on system efficiency is that the distance from
social optimum tells us nothing about the actual distribution of costs among agents.
It is a well-known fact that Pareto efficiency, an unavoidable concept in the theory of
general equilibrium (Arrow and Debreu, 1954), does not discriminate between a posi-
tion where one agent owns everything and one where all agents own the same share
of wealth. Rawls (2009), §12, notes this obvious shortcoming and frames the ensuing
problem as one of selecting the just allocation among all efficient ones. Inequalities
may arise, but, according to the second principle, are justified as long as the worst-off
individual is in a better situation than in an otherwise equal society.

Rawls thus offered a moral theory underpinning social inequalities. In parallel, a
larger literature concerned with the adequate measurement of inequality grew from
Gini (1921), a seminal text that introduced the well-known Gini index. The axiomati-
sation of these measurements, undertaken by Sen et al. (1997) and others, framed the
topic of inequality in the terms of welfare economics. While this approach proved fruit-
ful to derive properties of various inequality indices in concert with their implications
for social welfare, it developed somewhat orthogonally to the more efficiency-driven
excursions of price of anarchy work, leaving the effects of efficient mechanisms on in-
equality not entirely understood. If agents are endowed with some initial wealth, how does
a game modify this distribution?
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(A) (B) (C)

FIGURE 1.1: The graph colouring game. (a) Players are arranged on a network and start with
the same initial colour. (b) A colouring of the network: no two neighbours share the same
colour. (c) Players only have access to their local neighbourhood information.

We italicised four questions along the preceding introduction. These connected
questions critically assess the price of anarchy as a guarantee for system performance
and uncover the relations between efficiency, regret and inequality in decentralised
systems. The remainder of this thesis is dedicated to shedding light on each question,
employing both experimental methods and theoretical analysis.

1.1 When does sparse information seeding induce efficient equi-
librium selection?

The multiplicity of Nash equilibria is the first obstacle towards a predictive notion for
game theory. The quality of equilibria may vary drastically and it is not clear that
agents left to their own decisions, in a fully decentralised fashion, can reach the best
among all. Even when the game possesses additional structure—e.g., if it is a potential
game, where each possible improvement by one player is matched with a comparable
improvement by society as a whole—, the play can find itself stuck in a local equilib-
rium. Instead, introducing a restricted intervention by a central authority during the
play could help navigate the landscape of equilibria towards more efficient instances.

Our first question employs an abstraction of social situations, where agents have
limited information and incur costs that depend on the actions of their immediate
neighbours. Players are placed on a network, a structure where each player is con-
nected to a subset of other players (Figure 1.1a). Each player can decide on a colour
for herself, among three available options. A player incurs costs proportional to the
number of players she is connected to and who share the same colour as herself. In the
game, there exists a large number of inefficient equilibria where some pairs of neigh-
bours are still sharing the same colour. Conversely, there is a small number of configu-
rations for which no two neighbours have matching colours, and these configurations
are NE (Figure 1.1b).
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This setting offers many parallels to Hayek’s “circumstances of time and place”:
agent knowledge is limited to the colour choice of their immediate neighbours. The
structure of the network is not known to them, nor the colours of second degree neighbours—
neighbours of neighbours (Figure 1.1c). But even when agents have access only to lim-
ited information from their local neighbourhood, the game is set up such that “there is
hardly anything that happens anywhere in the world that might not have an effect on
the decision [the player] ought to make” (emphasis in the text, Hayek (1945)). A colour
change some distance away from one player may ripple through the network via the
actions of connected players reacting to the original change.

Now, in realistic settings, “we cannot expect this problem will be solved by first
communicating all this knowledge to a central board which, after integrating all knowl-
edge, issues its orders” (Hayek, 1945). For the problem under our consideration, other-
wise known as the graph colouring, the complexity of finding such a colouring—where
no two neighbours share the same colour—is exponential in the size of the network
(Garey, Johnson, and Stockmeyer, 1974). Still, for smaller instances of 30 agents, on
which we perform our experiments, one can precompute the colourings in the net-
work. We let the game unfold for some time, after which agents are at or close to
equilibrium, and communicate privately to a small fraction of players a suggestion, or
seed: their colour in one of the precomputed optimal configuration. The suggestion
is non-binding and non-incentivised. Players may disregard it and do not receive any
additional payoff from following it.

We find improvements of the play from control rounds with no suggestion to rounds
with seeding. The result—up to the complexity of central planning which we largely
eschew in our experiment—shows that a centralised authority can help in some in-
stances nudge the game to more efficient equilibria, even when agents have their own
incentives. Experiments confirm the importance of the topology of the network and the
placement of the receivers for the efficacy of the suggestion. These results constitute the
first investigation in this work of the tension between efficiency and decentralisation.

1.2 How efficient are learning agents following no-regret algo-
rithms?

The previous experiment tests the impact of coordination and centralisation on reach-
ing efficient NE. There, the structure of the game—a potential game—made it easy to
find NE via an approximate best response dynamics followed by the players. In general
games, there is no guarantee that such dynamics converge to a NE or some approxi-
mation of it. However, there is a weaker class of equilibria for which dynamics relying
only on the information of one’s own accumulated costs converge to.
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These equilibria are coarse correlated equilibria (CCE) (Young, 2004), which are a
superset of NE. A very strong relationship exists between CCE and no-regret learning
dynamics: No-regret dynamics are known to converge to the set of CCE, and any par-
ticular CCE can be made to be the target of a sequence of profiles that is no-regret for
all players. An algorithm is said to have no regret if looking back at a sequence of de-
cisions made by the algorithm and outcomes resulting from these decisions, no fixed
move could asymptotically outperform the cost of the obtained outcomes.

The convergence to NE is problematic and seemingly the class of no-regret dynam-
ics offers a way out. It may however be of interest to understand how players can
force convergence to NE, even in the presence of malicious agents, while maintaining
low regret. The convergence is not natural (since it cannot beat the PPAD4 hardness
of Daskalakis, Goldberg, and Papadimitriou (2006) in any case), and implies a lengthy
communication of payoffs as well as a phase of tit-for-tat system of threats and coun-
termeasures to deviations (Section 4.2).

Instead, we could attempt to obtain guarantees on the performance of no-regret
learning algorithms. The price of anarchy is concerned with the efficiency gap between
the worst NE of a game and its social optimum. Roughgarden (2015), with the def-
inition of (λ, µ)− smooth game, showed a natural extension of the notion to the gap
between the worst CCE and the SO. The gap between the best CCE and the SO is much
less understood, and gives a reasonable measure of just how much improvement can
be obtained by allowing players to follow no-regret strategies instead of focusing on
reaching a NE. We introduce respectively the value and the price of learning, measur-
ing the distance between the best (resp., worst) CCE and the best (resp., worst) NE
(Section 4.3).

1.3 What does a large scale experiment on Singapore’s routing
network tell us about the efficiency of the system and the
regret of its users?

The price of anarchy finds its first measurement in the famous routing game of Pigou
(1920) (Koutsoupias and Papadimitriou, 1999). There, a planner must decide how to
route a flow of mass 1 through two links (Figure 1.2a). The first link costs exactly the
amount of flow that traverses it. The second link costs always 1 to traverse. What is
the minimum attainable cost for the flow? The answer is 3

4 . The planner can split the
flow in half, with the half on the constant cost link incurring a total of 1

2 × 1 = 1
2 units,

and the half on the variable cost link incurring a cost of 1
2 ×

1
2 = 1

4 units, for a total of 3
4

(Figure 1.2b).

4Section 2.5 provides precise definitions and results on the complexity of finding a NE
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(A) (B)

(C) (D)

FIGURE 1.2: (a) Pigou (1920) introduced this game as a model for the congestion of “carts” on
the roads. A unit demand of flow wishes to go from the left node to the right node. The upper
link has latency equal to the fraction of the flow traversing it, while the lower link always has
latency 1, irrespective of the flow routed on it. In the following figures, circles represent players,
with radius proportional to the cost they incur (latency + price). (b) A central planner wishing
to minimise the sum of all costs in the population would route half of the flow in the upper link
(with latency is 1/2 and total cost 1/4) and half in the lower link (latency is 1, cost is 1/2). The
total cost is then 3/4. (c) At equilibrium however, when nonatomic agents in the flow decide
their own route, everyone would use the upper link, for a total cost of 1. The price of anarchy
is the ratio of equilibrium cost to optimal cost, equal to 4/3 here. (d) Adding a toll of 1/2 to
the upper link, where the cost for an agent is now price + latency, the planner can induce an
efficient equilibrium where half of the users now use the upper link and half the lower link.
However, we will see in Chapter 6 that this intervention has implications for the distribution of
wealth among players (Theorem 6.2.1, the Inequity Theorem).
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What if each infinitesimal unit of flow is controlled by an agent minimising her
own cost? The previous split is untenable: Agents using the constant cost link have the
incentive to deviate to the opposite link, where they will experience a cost of 1

2 . The
only sustainable configuration (a Nash equilibrium) has all agents from the constant
cost link moving to the variable cost link. In that case, the total cost of system (or social
cost) is 1× 1 = 1. The gap between this NE and SO is then 4

3 (Figure 1.2c).
This gap turns out to be an extremely general result: Roughgarden and Tardos

(2002) prove that for any network topology with affine link latency (as they were in
the previous Pigou example), the most inefficient NE cannot be further than 4

3 times
the cost of SO, with the Pigou network providing the tightness of the bound. For link
latencies that are general polynomials, one can derive additional bounds, all finite. The
concept can be extended to various settings, such as atomic agents (i.e., a finite num-
ber of agents controlling one unit of flow each) (Christodoulou and Koutsoupias, 2005)
or risk-averse agents who traverse edges with stochastic latencies (Ordóñez and Stier-
Moses, 2010; Nikolova and Stier-Moses, 2015).

By its very nature, the theoretical results pertaining to PoA have all expressed a
pessimistic, worst-case view of the system. Intuitively, the notion may be ill-suited to
real systems, and refinements of PoA show indeed that average-case efficiency gaps can
differ from their worst-case sibling (Panageas and Piliouras, 2016). The meaning of its
definition is also questioned by Colini-Baldeschi et al. (2017), who show that regimes
of asymptotically light and asymptotically heavy congestion both yield a PoA close
to 1 under general conditions, which include typically assumed conditions for road
networks—namely, quartic latency functions.

All of these considerations constitute the backdrop to the large experiment con-
ducted in Singapore that will animate our discussion. The data, collected over several
months by providing sensors to students which log their location and environmental
parameters frequently, is an unprecedented empirical survey of mobility patterns. It
is supplemented with algorithmic methods to obtain accurate information from the
raw data. As we will show, some of the theoretical ideas we enunciated previously do
not map one-to-one but inspire data-driven measurements of the system to uncover its
properties: equilibration, efficiency and regret.

1.4 Does increased efficiency naturally lead to increased in-
equality for agents in congestion games?

Singapore is famous for pioneering innovative congestion control mechanisms. With
the introduction of the Area Licensing Scheme (ALS) in 1975, it effectively cordoned
off the city centre with an array of tolls collected by officers from drivers entering the
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area. ALS was replaced by the Electronic Road Pricing System (ERP) in 1998, a system
of gantries automatically levying the toll from an onboard unit in the drivers’ vehicles.
The price of the road varies according to the time period and is updated every three
months to meet target speeds under the gantry, with speeds lower than target resulting
in an increase of the price and vice versa.

Tolls are complemented by a control of the demand for vehicles with the Certificate
of Entitlement (COE) scheme, for which drivers must bid to obtain a 10 year license
allowing them to drive the vehicle. As of the time of writing this thesis, the licenses are
given to exactly compensate for the number of de-registered vehicles, thus keeping the
number of registered vehicles constant.

That tolls and demand control mechanisms are efficient to reduce congestion is
clearly established in the literature, from the Pigouvian tax/marginal cost pricing (Fig-
ure 1.2d) to nonatomic routing games with type-specific costs (Fleischer, Jain, and Mah-
dian, 2004). In parallel, a large body of evidence relating to the fairness of congestion
pricing has shown the “winners and losers” of such schemes, how the revenue levied
from the tolls can be recycled for other projects and the impact on fairness of the proce-
dures (Levinson, 2010). But the intersection between these two branches has not been
mined, from the computational results of algorithmic game theory practitioners giving
few indications of how the mechanisms they advocate for impact inequality between
agents.

Suppose now that heterogeneous users, with different valuations of their time, enter
the system. We define the outcome for each agent as its initial wealth minus the cost
incurred in the game, weighted by a small constant α representing the importance of the
game for the agent. We then introduce the inequity of the game: as this constant α tends
to 0, how does the inequality of wealth vary? In other words, what is the marginal
impact of the game on inequality?

We find a general theorem for nonatomic symmetric congestion games showing
that the inequity is positive, meaning that the inequality of income increases after the
game is played, as measured by the Gini coefficient (Theorem 6.2.1). The theorem can
be generalised to any inequality measure that respects four fundamental axioms of in-
equality indices (Theorem 6.2.2). For the asymmetric case, where agents do not share
the same source and destination, we offer some counterexamples building on the in-
equity theorem of the symmetric case and particular inequality measures that offer de-
composition properties (Section 6.3). The inequity, as defined by the marginal effect of
the game on some inequality index, is shown to have useful properties when a natural
choice for cost functions is made (Section 6.4).

The lesson is that if the quest for efficiency does not necessarily exacerbates inequal-
ity among agents, it certainly has a non-neutral impact on inequality in the game. In
times of ever greater polarisation of resources and wealth (Piketty, 2014; Milanovic,
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2016), it is crucial to understand exactly how the mechanisms that govern our interac-
tions fare with regards other than their efficiency.

Organisation of the thesis

In the next section, we define the game-theoretic concepts that will be needed for the
remainder of the thesis. We then dedicate one chapter for each of the four questions.
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Chapter 2

Game theory concepts and
definitions

In the preceding introduction, we presented some of the concepts that will animate
our discussion throughout the four questions. In this chapter, we give a precise defini-
tion to these concepts. Later in the text, we supplement the exposition with additional
definitions when necessary.

2.1 Definition of a game

The work will be concerned with games Γ played by a set of agents A. This set may
be continuous or discrete, but let us start with a finite set of agents A = {1, . . . , N} for
some integer N > 0. We write i ∈ N to mean that agent i belongs to the set of players
{1, . . . , N}.

The description of the game includes the set of strategies available to each agent i,
written Si unless specified otherwise. This set is finite for all i ∈ N . A strategy profile is
a vector s = (s1, . . . , sN ) ∈ S =

∏N
i=1 Si specifying the choice of one strategy for each

agent. We write s−i to mean the (N − 1)-dimensional vector of strategies of all agents
except for i, i.e., s−i = (s1, . . . , si−1, si+1, . . . , sN ).

Agents incur a cost given by their own cost function, which depends on the current
strategy profile. Let ci : S → R be the cost function of agent i, from the set of strat-
egy profiles to the set of real numbers. The objective of all agents is to minimise their
own cost. The dependence on the strategy choices of the other players implies that to
minimise her own cost, agent i must consider the actions of the other agents.

The rules of the game—its set of agents, strategies and cost functions—are assumed
to be common knowledge among the players, unless otherwise stated.1 This implies
that all players know each other player’s strategy set and cost function, and all players
know that all players know each other player’s strategy set and cost function, etc.

1This will not be the case in Chapter 4.
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2.2 Nash equilibrium

Given a game, how should the agents be expected to play? The search for such an
answer brought the Nash equilibrium (Nash, 1950). A strategy profile s̄ is a NE if no
player can profitably deviate unilaterally from s̄.

Definition 2.2.1. s̄ is a NE if the following condition is verified:

∀i ∈ N, ∀si, ci(s̄) ≤ ci(si, s̄−i) (NE)

In general, a game Γ may possess several NE. We present such a game, historically
known as the Battle of the Sexes. Alice and Bob have identical strategy sets composed
of two actions: They can either go to the Museum M or to the Park P . They are happy
when they coordinate such that both choose the same activity, but each has a preference
for a different activity. Indeed, Alice enjoys the Museum better than the Park, while the
opposite is true for Bob. This information is summarised by the following cost matrix:

M P( )
M 0, 1 2, 2

P 2, 2 1, 0

In this example, Alice is the row player and Bob is the column player. The strategy
profile (M,M) yields cost 0 for Alice (who enjoys the Museum) and cost 1 for Bob (who
enjoys the Park more, but likes to be with Alice). It is easy to see that this game has two
NE, namely (M,M) and (P, P ).2 In either of these profiles, if one player deviates, both
end up doing separate activities and thus the deviating player’s cost increases.

2.3 The price of anarchy

The notion of NE gives a first solution concept for games of self-interested agents. NE
shows that incentives are what matters to the agents. Let us analyse the following ex-
ample, the Prisoner’s Dilemma, to understand what this means in practice.

Two robbers are arrested and placed in different cells with no communication. The
police officer on patrol does not have incriminating evidence, but offers the following
bargain.

• If neither of them cooperates with the officer, they are both given a default sen-
tence of one year due to lack of evidence.

2And another, distinct, mixed equilibrium (Section 2.4).
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• If both of them cooperate, each incriminating the other, there is enough evidence
to send both in prison for three years.

• If only one of them cooperates, the “snitch” will be given a special deal from the
prosecutor and spend no time behind bars, while his loyal companion will be
given four years.

The cost matrix is as such:
N C( )

N 1, 1 4, 0

C 0, 4 3, 3

where N is the action of “Not cooperating” while C is that of “Cooperating”.
In this classical example, the only NE of the game is (C,C). Although this equi-

librium is obviously suboptimal, since both would decrease their cost if they picked
(N,N) instead, neither of the agents has any incentive to not cooperate with the officer. The
definition of suboptimal is clear in this example, but let us define precisely how to mea-
sure the optimality of a strategy profile.

Definition 2.3.1. The social cost of a profile s is given by:

SC(s) =
N∑
i=1

ci(s).

The social optimum of a game Γ is the minimum value of the social cost.

SO = min
s∈S

SC(s)

One can think of the social optimum as being enforced by a centralised planner
who has the power to select one strategy for each of the agents. We see in the Pris-
oner’s Dilemma the premise of the question that will agitate most of our work: the
discrepancy between the equilibria of self-interested agents and the social optimum as
dictated by some central planner. This gap was given the name of coordination ratio by
Koutsoupias and Papadimitriou (1999), and subsequently renamed price of anarchy in
Papadimitriou (2001).

Definition 2.3.2. The price of anarchy (PoA) of a game Γ is the ratio of the social cost
of the worst Nash equilibrium (i.e., the NE with the highest social cost) to the social
optimum (SO).

PoA(Γ) = max
s̄∈NE(Γ)

SC(s̄)

SO
(PoA)
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2.4 Mixed strategies

We have so far—intentionally—focused on the choice of pure strategies by the agents,
where players decide on one action from their set of strategies. But if we restrict the
players to choosing only pure strategies, we are not guaranteed that a NE exists for any
finite game Γ. Hence, we must allow players to randomise the choice of their strategies.

Definition 2.4.1. Call ∆(Si) the set of mixed strategies of agent i, i.e. the (|Si| − 1)-
simplex ∆(Si) = {(pj)j∈Si |

∑
j∈Si pj = 1; pj ≥ 0, ∀j}.

Theorem 2.4.1. For any game Γ with a finite number of agents using mixed strategies over a
finite set of actions and bounded cost functions, there exists a Nash equilibrium.

Mixed strategies will be revisited in Chapter 3, with simulations implementing
learning dynamics over the space of mixed strategies. In Chapter 4, we devise a proto-
col for players to check if other players follow truthfully a given mixed strategy, while
maintaining no-regret.

2.5 Complexity of finding a Nash equilibrium

A game Γ with costs in Q can be represented by its strategy sets and the cost function
of every player. Assuming we need b bits to encode the costs, and s bits to encode the
strategies (with maxi∈N |Si| ≤ log2(s)), we require up to (sb)N bits to encode the full
cost matrix of all players. This is the input size of the game.

An algorithm is said to be of complexity O(f(n)) if its execution is guaranteed to
end before some bound c · f(n) for an input of size n. When f(n) is a polynomial
function of n, the algorithm can be executed in polynomial time. If no such polynomial
exists, the algorithm is executed in exponential time (Garey and Johnson, 2002).

Polynomial time computation is related to a class of problems named P. These prob-
lems are yes/no questions, where for an input of size n, one can compute a boolean
property of the input in polynomial time. For instance, the problem “Is there a posi-
tive integer m such that N = 8m?” for some positive integer N can be solved in time
polynomial in the size of N , and thus belongs in P.

P is included in a larger class of problems, NP, for which one may not be able to effi-
ciently (i.e., polynomially) find a proof (i.e., an element that satisfies the question, as m
in the previous example), but can efficiently verify the proof. For the graph colouring,
which is the backdrop of Chapter 3, the problem Can the graph G = (V,E) be coloured
with m colours? is in NP for m > 2. Given a colouring, one can efficiently verify that
it is a proper colouring of the graph by iterating over the edges and checking that the
endpoints do not share the same colour.
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It is not known whether P = NP, although the alternative is preferred by most ex-
perts. In this case, there are problems which belong to NP, but not to P. Satisfiability
(SAT) is the first problem shown to belong to this class, called NP-complete, by Cook’s
theorem (Cook, 1971). If a problem L in NP can be reduced to SAT by a polynomial
time algorithm, that is, if there is a map from L’s input to an instance of SAT, then L is
also NP-complete.

Daskalakis, Goldberg, and Papadimitriou (2006) proved that finding a NE of a game
Γ belongs to the PPAD class. Indeed, we know by Nash’s theorem that every finite
game has at least one (possibly mixed) NE. This simplifies the problem somewhat, in
contrast with SAT for which we cannot know in advance if there is a circuit satisfying
its input predicates. PPAD instances “look like” a total graph search, where the graph
is of size 2n, one for each bit string of length n. This implies that finding a NE is hard,
in the sense that provided P 6= NP, PPAD-complete problems are intractable.

2.6 Price of anarchy of routing games

In this section, we define routing games and provide an index of famous results on the
price of anarchy in this class of games.

2.6.1 Routing games

Routing games are played on a networkG = (V,E), where V is a set of vertices andE a
set of (directed) edges connecting vertices. Routing games admit a continuum of play-
ers (nonatomic routing games) or discrete players (atomic routing games). Surprisingly,
bounds on PoA in each case are different from each other.3 The following exposition
focuses on nonatomic games, with references to the atomic case when appropriate.

Strategy sets The strategy sets of the players are acyclic paths connecting an origin to
a destination. If all players share the same origin and the same destination, the game
is called symmetric or single commodity. Otherwise, if several origin-destination pairs
exist, the game is asymmetric or multicommodity. We assume the game is asymmetric
and has K such pairs, each with demand µk > 0. The strategy set is thus P = ∪Ki=1Pk,
wherePk is the set of all paths connecting the origin and destination of commodity k. A
profile (one strategy for each player) determines a flow f ∈ PR, returning the demand
for path P ∈ P .

3But an atomic routing game with vanishingly small players can be equated with its nonatomic coun-
terpart (Feldman et al., 2016).
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Cost functions Edges in the network are associated with a cost function ce, map-
ping the congestion on the edge, z, to a non-negative cost. The congestion is exactly
equal to the number (or mass) of agents traversing the edge and can be obtained by
summing over all paths including the edge. Thus, the cost function is assumed to be
non-decreasing in the congestion. The cost of path P under flow f is equal to

cP (f) =
∑
e∈P

ce(fe)

where fe =
∑

P3e fP is the congestion on edge e under flow f .

Nash equilibrium A flow f̄ is a Nash equilibrium if, for any commodity k and for all
paths P, P ′ ∈ Pk such that f̄P > 0,

cP (f̄) ≤ cP ′(f̄)

2.6.2 Social cost of a flow

Introduced previously, the price of anarchy is concerned with the efficiency gap be-
tween the worst equilibrium of a game and the social optimum. We first need to define
the social cost to measure the cost of a flow.

Cost of a flow By summing the costs over the population of players, we obtain the
social cost. By equivalence, we can sum over the paths or the edges to obtain the same
and thus define

SC(f) =
∑
P∈P

fP cP (f) =
∑
e∈E

fece(fe)

Proposition 2.6.1. If f̄ and f̄ ′ are equilibria of a game Γ, then ce(f̄) = ce(f̄
′) for all e ∈ E

and SC(f̄) = SC(f̄ ′).

Social optimum The socially optimal flow f∗ satisfies

SC(f∗) = min
f∈F

SC(f)

where F is the set of feasible flows (i.e., flows respecting demand constraints).
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TABLE 2.1: Price of anarchy for some classes of cost functions (nonatomic games).

Class Nonatomic games

Affine costs 4/3
Quadratic costs 1.626
Quartic costs 2.151

2.6.3 Routing games are potential games

A game Γ is called a potential game if there exists a function Φ over game profiles such
that, informally, a social cost improvement due to a deviation corresponds to a compa-
rable improvement of the potential. If the improvement of the potential is exactly equal
to the improvement in the social cost, the potential is called exact.

By defining the following function Φ : F → R, a routing game can be shown to
admit Φ as a potential function.

Φ(f) =
∑
e∈E

∫ fe

0
ce(x)dx

Additionally, one can prove that equilibrium flows are global minima of the poten-
tial function, leading to an optimisation-driven definition of equilibrium.

2.6.4 The price of anarchy of routing games

We define the price of anarchy of a game Γ by

PoA(Γ) =
SC(f̄)

SC(f∗)
,

where f̄ is an equilibrium flow and f∗ is a socially optimal flow.
The price of anarchy can be defined over a class of games, represented by their

cost functions. For instance, if all cost functions in Γ belong to some class G, we write
Γ ∈ ΓG , and the price of anarchy over ΓG is

PoA(ΓG) = max
Γ∈ΓG

PoA(Γ).

Examples of such classes include linear latencies, quadratic latencies and more gen-
erally, any polynomial of the congestion on the edge. We provide in Table 2.1 the
bounds obtained for some classes.
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2.6.5 (λ, µ)-smooth games

Arguments for the bounds in Table 2.1 were recently collected under the framework of
(λ, µ)-smoothness (Roughgarden, 2015).

Definition 2.6.1. A game is (λ, µ)-smooth if for profiles s and s′,

N∑
i=1

ci(si, s
′
−i) ≤ λ · SC(s) + µ · SC(s′)

With λ and µ obtained to make the inequality as tight as possible, PoA bounds
follow easily. These bounds are robust to no-regret learning and hence translate to the
larger class of CCE (and, by extension, to mixed NE). However, the additional regret
term can be arbitrarily large for a long period of time, as explored in Section 4.4.

2.7 A note on terminology

This short section disambiguates the use of terms important to this thesis. We have in-
troduced equilibria and optimum in Section 2.3. By efficiency, we mean the social cost
SC of a configuration, i.e., the sum of all costs incurred by all agents in the system. Ef-
ficient equilibria, or optimal equilibria, are equilibria which also mimimise the social
cost. When we speak of decentralisation, we mean that agents are responsible for their
own decisions, and a central authority cannot compel an agent to follow a different
choice (but can enforce mechanisms in the game, e.g., tolls).
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Chapter 3

When does sparse information
seeding induce efficient equilibrium
selection?

Chapter 1 introduced the broad themes of efficiency, decentralisation and the tension
between the two. The selfish decisions of agents can produce outcomes which are sub-
optimal, e.g., in the Pigou network of Figure 1.2. In some cases, it is possible for a
designer to implement mechanisms correcting for this inefficiency, while maintaining
decentralisation, for instance using tolls.

But inefficiency, in general, is not only due to selfishness. The difficulty of reaching
efficient states is compounded by the possible existence of many Nash equilibria in a
game, with varying costs. Agents engaged in a game where some of the equilibria are
efficient may simply be unable to reach an optimal state from lack of coordination and
get stuck in suboptimal equilibria instead.

In routing games with a positive price of anarchy, the optimal flow is not stable
with respect to decentralisation. Letting agents choose their own route will invariably
lead to a more inefficient configuration.1 A central authority thus cannot improve the
situation unless it directly changes the incentives of the agents in the game. But if
efficient equilibria exist, the same central authority could potentially coordinate agents
with meaningful suggestions.

This is the setting of our first experiment, which provides evidence that sparse in-
formation seeding from a centralised messenger can improve coordination among the
agents and lead the play towards better states. In some sense, its assumptions are
stronger than any other in the thesis: efficient equilibria exist, and so does a central
authority which has access to sufficient computing power to find these equilibria and
can communicate privately to some players.

An approach such as public service announcements (PSA) is often used in practice
to coordinate a system, but the conditions for its success are not entirely understood

1This is true for a broad class of dynamics (Monderer and Shapley, 1996; Shah and Shin, 2010).
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when agents act in their own interests as they do in this experiment. Theoretical re-
search on the topic (Balcan, Blum, and Mansour, 2009; Balcan et al., 2014) has only
established broad results whose intuition may not carry over to real systems. Our ex-
periment is played over social networks whose properties are shown to have a signifi-
cant impact on the outcomes.

Indeed, the experiment features groups of subjects embedded in social networks
who are individually incentivised to differentiate themselves from their neighbours,
with an optimal system-wide solution being a colouring of the graph (Garey, Johnson,
and Stockmeyer, 1974). In contrast with previous designs gauging the ability of the
entire group to find such a colouring (Kearns, Suri, and Montfort, 2006; Judd, Kearns,
and Vorobeychik, 2010), individual performance is scored. This design locates our ex-
periment closer to models where agents are not concerned with the system reaching
global optimum but minimise their own costs, a more natural formulation for multi-
agent systems that overcomes the limitations of previous literature. However, a central
planner who cares for the system-wide costs intervenes to guide the players towards
efficiency.

After the game unfolds for a fixed period of time, usually sufficient for the players to
approach a NE, a central messenger selects one of several solutions to the problem and
communicates privately to 10 or 20 percent of players the action they would implement
under the chosen configuration. Adopting the suggestion contained in the seed may
not be individually rational for receivers. This setup is compared to one where play-
ers do not receive any information from the central messenger. Since the latter may
provide suggestions that are detrimental to ones’ own choice, the experiment tests the
weakest possible form of information seeding: non-binding, unsubsidised and possibly
individually irrational.

Contents of this chapter

We start with the description of the experiment in Section 3.1. The scoring rule is dis-
cussed as well as the choice of networks. More precisions are given on the manner in
which the central messenger chooses the seeds to communicate to receiving nodes.

Our first results are obtained from the analysis of the experimental data in Sec-
tion 3.2. The suggestion improves the player costs in some networks, but not others.
Seeds also impact the stability of the play, with seeded rounds logging a lower up-
date rate than unseeded ones. We also study the behaviour of receivers and find some
evidence of costly deviations in the presence of the suggestion.

In Section 3.3, we provide additional results obtained from simulations of the play
via both learning dynamics and a behavioural model obtained from experimental data.
The position of the receivers is seen to yield more or less improvement depending on its
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centrality. Network statistics such as their clustering coefficient as well as the average
distance further impact the efficiency of the seeds.

3.1 Methodology

3.1.1 Recruitment

240 students, researchers and staff from the Singapore University of Technology and
Design (SUTD) were recruited between May 2017 and March 2018 to participate in
one of 8 sessions. The first session, thereafter named “pilot session”, was reserved
for testing the experiment platform as well as refining the experimental parameter of
round duration from 180 seconds to 120 seconds. During the second session, a technical
issue – invisible to subjects – prevented the data collection during treatment rounds,
leaving control rounds unaffected. Minor technical issues were recorded in further
sessions, for which a small number of rounds were dropped. The exact numbers are
provided in Table A.1.

In each session, 30 participants were recruited and could not sign up for any fur-
ther session. Participants were given a SGD5 show-up fee, with the possibility of being
awarded up to SGD20 more depending on their performance. The sessions were di-
vided in four parts:

• Subjects are placed randomly in a room, arranged such that each subject has lim-
ited visibility to the other subjects’ computers.

• Once everybody is seated, subjects start an interactive tutorial describing the
rules of the game and the modalities of payment. Subjects must complete three
questions throughout the tutorial to assess their understanding of the rules of the
game and how their final payoff is computed.

• Once all participants have completed the tutorial, the number of rounds is pub-
licly announced and the game moves to the first round. Between each round,
subjects are presented with a loading screen and the index of the next round.

• At the end of the final round, the subjects’ screens present the summary of their
performance in each round with a bold row indicating the round – chosen ran-
domly – that constitutes their evaluation. The payoff of this round is translated
into the variable award, between SGD0 and SGD20. A final piece of information
is their total winnings, including the SGD5 show-up and the variable award.

Each session, consisting of 30 subjects, played between 15 and 18 rounds of the
graph colouring game, for a grand total of 95 rounds played (see Table A.1).
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3.1.2 Description of the game

At the start of a round, all 30 players were randomly assigned one node of a network
and provided with a budget of 100 points. All nodes were given the same initial colour.
During the play, which lasted for 120 seconds, a player was able to change their node
colour among 3 options, including the initial colour, at any point, as many times as
needed. The player observed at all times the colour of its immediate neighbours, i.e.,
nodes connected to her own in the network, and their real time colour changes.

We call a match an edge connecting two players who share the same colour. When a
player has a match, points are deducted from its budget. The costs were scaled by the
degree of their node and the duration of the round. For instance, at time t, if a player
matched with 2 of her neighbours out of 5, the player incurred a cost of 2

5 ×
100
120 .

The graph was considered coloured, or, to have reached a colouring, if no two
neighbouring nodes shared the same colour, in which case the round was stopped.
Thus, individual costs accumulated as long as matches in the network were present. If
players did not reach a colouring before 120 seconds, the round was stopped. Finally,
players received a financial incentive proportional to their final cost, additional to the
show-up fee (see Materials and Methods).

3.1.3 Choice of the networks

We focused on 4 of the most common network structures, specifically Barabási-Albert (ba)
(Barabási and Albert, 1999), Erdős-Rényi (er) (Erdős and Rényi, 1959), stochastic blocks (sb)
(Holland, Laskey, and Leinhardt, 1983) and Watts-Strogatz (ws) (Watts and Strogatz,
1998). For each type, we selected one network of 30 nodes (Figure 3.1), all 3-colourable.

These networks were chosen as adversarial instances for the graph colouring prob-
lem. A measure of hardness is defined in the following way. Random runs of best re-
sponse dynamics (formally defined in Section 3.3.1) are simulated on a network, lead-
ing to equilibrium. The number of matches at equilibrium is then averaged over all
runs to obtain a hardness measure. 200 networks from each type were generated and
the hardest instance was selected for the experiment. As a result of the correlation be-
tween the number of colourings and this measure of hardness (Shirado and Christakis,
2017), each of the four networks had a low number of colourings, ranging from 24
for sb and ws to 48 for er and 120 for ba, among 330 possible configurations (including
permutations).

3.1.4 Choice of the suggestion

Participants were informed that during the play they may receive a static suggestion in
the form of a fixed colour appearing in a special section of the game screen, however
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(A) (B)

(C) (D)

FIGURE 3.1: The four experimental networks, chosen adversarially. Chosen nodes are coloured
in blue or in orange. Receiver nodes in rounds with three seeds are in blue. Additional re-
ceiver nodes in rounds with six seeds are in orange. a. Barabási-Albert: A few nodes are
well-connected (hubs), while others receive fewer neighbours (periphery), connected accord-
ing to a preferential attachment dynamics. b. Watts-Strogatz: Each node is connected to its two
nearest neighbours and its two neighbours two steps away, before edges are randomly rewired.
c. Erdős-Rényi: An edge is drawn between two nodes with some probability p. d. Stochastic
blocks: 5 families of 6 nodes each have more within-block connections than between-blocks
connections.
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following this suggestion was not directly incentivised. In the thesis, we use the terms
“seed” and “suggestion” interchangeably. The suggestion was given after 20 seconds
of play. Among all colourings of the network, the central messenger selected one that
minimised some distance from the configuration at t = 20. The seed received by the
participants was the colour prescribed by the selected colouring for their node.

From the set C of known colourings for each network, the central messenger selects
one to minimise the distance from the configuration c after 20 seconds. The messenger
chooses the colouring ĉ such that it would yield the minimum number of matches in
the network if all receiving nodes were to follow the suggestion.

For instance, we assume the current configuration is c = (r, r), where the colours
allowed are {r, y} and the graph is a simple edge between two nodes. The first node of
the pair is a receiver. Two colourings exist: (r, y) and (y, r), but the latter only would
yield zero matches when the receiver follows its recommendation and is thus selected
by the centralised messenger.

Unbeknownst to the players, six fixed nodes in each graph were called chosen nodes.
During control rounds, none of the six chosen nodes received a suggestion. In the
two levels of treatment, respectively 3 out of 6 and 6 out of 6 of the chosen nodes
(respectively, 10% and 20% of the overall network nodes) received a suggestion, in
which case they were called receiver nodes. The 3 nodes in the first level of treatment
were fixed. Players were blind to the experimental condition of the round, except for
receivers who knew they were given a suggestion after 20 seconds of play—but ignored
the overall level of suggestion or the network type.

3.2 Experimental results

The suggestions, though sparse and non-binding, decrease player costs under some
conditions. Indeed, the cost improvement varies in the four networks, ranging from
significantly lower costs to no effect. Second, introducing seeds decreases the update
rates of the players and increases the stability of the system. This finding contrasts
with previous studies emphasising the importance of noise to move the system to bet-
ter states (Shirado and Christakis, 2017). Between the networks for which seeds im-
proved equilibration and those where the seeds did not, the most contrasting effect lies
in the quality of the suggestion, i.e., whether it advertises an individually rational ac-
tion or not. The quality of the suggestion may explain how reduced exploration entails
greater coordination in that case. To explain these variations, we find that the group be-
tweenness centrality (GBC) of the receiver nodes, relative to the average GBC of any set
of nodes with equal size, correlates with the efficiency of the suggestions in each net-
work. Furthermore, simulations on additional random networks show the impact of
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FIGURE 3.2: Throughout the game, players accumulate costs proportional to their number of
matches with neighbours. The light blue line (resp. dark blue line) corresponds to the average
incurred cost in rounds with 3 seeds (resp. 6 seeds), while the orange line charts the average in
the control rounds. The plot gives the average cost after seeding, because all players have the
same colour at the start of the game and thus incur a high cost, thereby distorting the scale of the
plot. Further, since there is no experimental difference between the first 20 seconds in control
and treatments, these are omitted from the plots. Only Barabási-Albert and Watts-Strogatz
networks present a significant improvement from 0 to 3 and 6 seeds.
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network topology—namely, their clustering coefficient and their average distance—on
the cost improvement.

3.2.1 The effect of suggestion on player cost

We consider a measure of partial solution to the problem, embodied by player costs,
i.e., the loss of the players from the original 100 points budget given in each round. The
series of player costs does not follow a normal distribution after rescaling (Shapiro-
Wilk test, W = 0.86, p < 0.01) and the variances are significantly different in the three
groups, F (2, 2877) = 4.28, p < 0.05.

Figure 3.2 plots the average cost incurred by the players throughout the game. Be-
fore receiving seeds from the centralised messenger, average costs are not significantly
different between the three conditions and are thus left out of the plot. After reception
of the seed, for two networks (ba and ws), the cost diverges significantly in both treat-
ments. The improvement from 10 to 20 percent of receivers is however not significant
for any network type, pointing to a marginally decreasing effect of the treatment.

How are these costs incurred? Players update their colours until a colouring is
reached or time runs out, the former option occurring in 9 rounds out of 95—less than
10% of the samples. Thus, some players still incur costs throughout the round. Figure
3.3a reports the high amount of time spent at or near equilibrium, where no player has
any strict incentive to deviate from her current colour choice. The stability of inefficient
equilibria represents an obstacle to cost improvement and motivates the introduction
of seeds to coordinate the players’ actions.

3.2.2 Seeds increase system stability

The update rate is computed as the number of updates by a node in a given time period
divided by the length of that period (in minutes). Before the seed is provided, the
update rate is not significantly different between control and treatment groups, with
average rates close to 6.1 updates per minute. However, after broadcasting the seed, the
update rates decrease significantly between rounds with suggestions (the average rate
is 1.15 for both 3 and 6 seeds) and rounds without (the average rate is 1.49). The contrast
is stronger in networks where the suggestion has improved equilibration (Figure 3.3b).

There is no reason for a node to keep updating if it is already achieving its minimum
cost, i.e., is in best response. Thus, with a greater number of players in best response, we
observe longer durations between two moves in the network (Figure S1, SI). As players
in ba and ws are able to reach a more efficient equilibrium in a shorter amount of time
(Figure 3.2), the update rate may decrease as a consequence. In Figure 3.3c, the average
player cost per second is plotted against the update rate after seeding for each round.
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FIGURE 3.3: a. A player is in best response if her current colour choice minimises the number
of matches with her neighbours. For a given percentage of players x, we plot the total number
of seconds over all rounds spent with x percent of players in best response. We observe nodes
spend most of the time at or close to equilibrium, where all players are in best response. The
y-axis is scaled logarithmically. b. Average update rates of all nodes after seeding. Only ba and
ws register a significantly lower update rate with respect to the control rounds. c. The x-axis
represents the average player cost, i.e., the average of the cost incurred during one second by a
player. The y-axis gives the system update rate, or the number of colour changes by all nodes
divided by the time between seeding and the complete round of 120 seconds. Each round is
associated with one point, with colour following the legend of Figure 3.2 (orange = no seed,
light blue = 3 seeds, dark blue = 6 seeds). Control rounds appear more frequently towards the
top right section of the plot.

The two variables are significantly correlated while a larger share of control rounds is
found in the top right quadrant of the chart, indicating higher average costs.

3.2.3 Behaviour of receivers

Twenty seconds into the game, receivers see a suggestion appear on their screen ac-
companied with a colour choice. The label states: “This is the colour of your node in a
proper colouring of the graph. You are free to follow or disregard this hint. This will not have
any direct impact on your score.” Some receivers are advised to play their current choice,
if the selection algorithm deems that it should be their choice in the closest available
colouring. Figure 3.4a charts the aggregate behaviour of receivers throughout the game
with respect to the seed.

For receivers in the two networks that present a clear improvement over control, ba
and ws, the seed is a best response for a significantly higher portion of the time than in
er and sb. Conversely, the amount of time spent in the suggested colour by receivers in
ba and ws is significantly higher than that of receivers in er and sb (Figure 3.4b). When
more than one colour choice (including the suggestion) is a best response, the seed is
played an average of 70% of the time, showing a strict preference for following the
suggestion even in the presence of equivalent options.

The seed communicated to receiving nodes may advertise a colour that is not in-
dividually rational for the player to follow. Yet, some receivers act against their own
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FIGURE 3.4: a. Sankey diagram of receivers. Over half of the seeds suggest the receivers to keep
playing their current colour choice. Among those receiving such a seed, over 75% of them keep
playing this colour until the end of the game. b. For each network, blue columns represent
the fraction of time during which the seed is a best response and orange columns represent
the fraction of time spent playing the seed. The two values are highly correlated with each
other. c. For receivers acting against their own self-interest, we plot the density of the time to
resolution, where resolution is either brought by the environment changing to bring matches to
a level lower than or equal to before the deviation (eventual success), or by the receiver flipping
out of the seed (move out). Most resolutions are quick, under 10 seconds. Receivers seem to test
their environment, whether following an ex ante unreasonable suggestion will eventually bring
the cost down following neighbouring updates. They are quick to revert to a best response
(Med: 2.9 seconds) otherwise.
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immediate self-interest and choose to follow the suggestion even when it is not rational
for them to do so. We count 80 instances of such behaviour and determine how and
when this deviation is resolved. Three disjoint cases are present: either the receiver’s
neighbours update their colours such that the number of matches is lower than or equal
than the matches before deviating (eventually successful, 42 cases); or the receiver moves
out of the colour before this happens (move out, 33 cases); or the game ends before this
happens (5 cases). With the exception of two cases, receivers are in best response be-
fore deviating to the non-best response seed, thereby strictly increasing their costs by
following the suggestion.

Figure 3.4c shows for the two groups of receivers – eventually successful ones or
those who move out – a histogram of the resolution time: how long before they recover
from their deviation or before they decide to move out. The plot shows that altruistic
receivers may be divided in two groups. Some are willing to wait only for a median
time of 2.9 seconds before reverting to a best response if their deviation is not eventu-
ally successful. Fewer stay in non-best response for much longer periods, showing a
stronger commitment to the suggestion. Meanwhile, most eventually successful devia-
tions are resolved within a 5 to 6 seconds timeframe, indicating that they help the local
neighbourhood of the receiver coordinate.

3.3 Impact of network topology on the efficiency

The preceding results obtained from the experimental data hint at a very strong rela-
tionship between the behaviour of the receiver and the cost improvements in the game.
In this section, we show that the position of the receivers as well as the overall topology
of the network both factor into the efficiency of the centralised suggestion. During the
experiment, the position of the receivers was kept fixed for each network, and the pro-
cedure was only tested on one network (chosen adversarially) of each type. To study
the impact of position as well as topology, we are required to simulate the game, which
we do in two ways. First, we use two classic learning dynamics from multi-agent sys-
tems, best response and multiplicative weight updates. Second, we build a behavioural
model of the players and agent-based simulations of the game.

We first introduce the various simulations before turning our attention to the posi-
tion of the receivers and the topology of the networks.

3.3.1 Simulations of the play

Learning dynamics

The play is simulated with two learning dynamics, best response (BR) and multiplica-
tive weights update (MWU). Each is run following this procedure:



32

• The game starts from an initial configuration.

• Dynamics are run until an equilibrium is reached.

• Seeds are sent out to players and the play profile is updated.

• Dynamics are run until an equilibrium is reached.

• We compare the number of matches in the first equilibrium with that of the sec-
ond equilibrium.

Best Response (BR) A BR dynamics selects one-by-one uniformly at random in a
player and allows her to change her action given the current choices of her neighbours.
The selected action minimises her current cost and in the case where the set of minimis-
ing actions includes more than one element, an action is chosen uniformly at random.
It is known (Nisan et al., 2007) that a sequence of best responses always converges to a
pure Nash equilibrium—if one exists.

The initial configuration is chosen with all nodes sharing the same colour, i.e., a
maximal number of matches in the graph, reflecting the experiment setup.

Multiplicative Weights Update (MWU) While BR is a dynamics over the pure strate-
gies of the agent, MWU is a dynamics over their mixed strategies (defined in Section
2.4). Specifically, the probability pic(t) that player i chooses color c at time t ∈ N is
governed by the following equation:

pic(t+ 1) = pic(t)
1− γW (c, p)

1− ε
∑

c∈SW (c, p)
(MWU)

where
W (c, p) =

∑
ĉ∈S

∑
j∈N (i)

cost(c, ĉ) · pjĉ(t)

is the cost of using strategy c against profile p, γ is the learning rate set to γ = 0.01

and cost(c, ĉ) is equal to 1 if c = ĉ—i.e., if there is a match with the neighbour—and
0 otherwise. Strategies performing worse are penalised and their probability in the
mixed strategy is reduced. The denominator normalises the distribution such that it
sums to 1.

To reflect the experiment, each player’s initial mixed strategy is of the form (2/3 +

ε, 1/6 − ε/2, 1/6 − ε/2), where ε is a uniformly distributed noise in [−1/500, 1/500] to
break the symmetry between moves. Dynamics evolve such that at equilibrium, all
colours that are a best response have positive weight. As seeds are sent, receivers up-
date their strategy to (wi, w−i), where wi = 2/3 + ε where i is the recommended colour
and w−i = (1/6− ε/2, 1/6− ε/2).
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Convergence of dynamics Best response dynamics are run until a Nash equilibrium
is found, i.e., when no player can strictly decrease her number of matches by changing
her current colour. MWU dynamics converge for each player to a mixed strategy that
assigns positive probability to any colour that is a best response to the current environ-
ment. For instance, a player may have only one action weighted with probability 1 in
the mixed strategy, or a probability p on Red and 1− p on Blue if both Red and Blue are
colours that would yield the same number of matches under the current profile. The
value of p depends on the initialisation of the dynamics, p(0).

Behavioural model

Players in the game make decisions based on their local neighbourhood and infor-
mation environment (e.g., with seed or without seed). A behavioural model of their
decision-making is built from two pieces, whether to switch to a different colour or
not, and which colour to choose in a switch. To obtain the data for fitting the model,
we get for each second of play and each player in every round a vector containing lo-
cal information at the start of the round (fraction of neighbours in each colour choice,
presence of a seed, colour of seed, current colour choice) and events occurring during
that second (whether the player switches or not, and to which colour).

Switching model A logistic regression returning a binary decision variable is con-
structed from the following factors: fraction of matches, i.e., number of matches di-
vided by node degree; seconds elapsed since previous move; whether the player has
received a seed or not; whether the seed is equal to the current colour choice of the
player. The model is fit with all of the data. The output variable represents whether the
player deviates from her current colour choice or not.

Colour choice model A logistic regression returning a decision variable with three
levels is constructed from the following factors: fraction of neighbours in colour 1 (red);
fraction of neighbours in colour 2 (yellow); fraction of neighbours in colour 3 (blue);
colour of the seed (categorical variable with 4 levels: no seed, red, yellow, blue). The
model is fit on vectors where the player makes a colour switch. The output variable
represents the colour choice of a switching player.

Agent-based simulation The simulation strictly follows the rules of the experiment.
All players are endowed with 100 points, the duration of the game is 120 seconds
(called steps of the simulation hereafter) and seeds are given out after 20 steps. At each
step, the switching model is queried to decide whether each player should switch. For
those who do, the colour choice model is queried to choose their move. If the model
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FIGURE 3.5: Comparison of the group betweenness centrality of two sets of receivers with the
sum of their individual betweenness centralities Σb. The GBC more accurately measures the
centrality of the set of receivers. a. GBC = 63.84, Σb = 300.57. b. GBC = 240.43, Σb = 286.8.

returns the current colour of the player, it is ignored. Costs are computed using the
same scoring rule, with the resulting history of moves in the simulation.

3.3.2 Influence of receiver position on costs

One distinguishing feature of networks where player costs have improved after the
suggestion is that the seeds advise to play a best response for a larger fraction of time.
However, there is not a significantly higher fraction of receivers for which the seed
is their current colour choice in the two successful networks. But by the end of the
round, in ba and ws, a significantly larger fraction of receivers never deviated from the
suggestion than in er and sb. In other words, their environment maintained the seed as
a best response.

The preceding observation indicates that network effects are at play, such as the
topology of the graphs and the position of the receivers. The group betweenness cen-
trality (Everett and Borgatti, 1999) of a set of nodes is employed here to explain the
qualitatively different results obtained in the four networks. Let C be a set of nodes in
the network. Their group betweenness centrality (GBC) is measured by the sum over
all pairs of sources and destinations s, t (not included in C) of the fraction of shortest
paths connecting s to t running through at least one point in C among all shortest paths
connecting s to t.

We compare in Figure 3.5 the GBC of a set of nodes with the sum of their individual
betweenness centralities. The latter does not discriminate between a highly clustered
set of receivers, for which the seeds may only have local effects, and a set that covers
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TABLE 3.1: Spearman rank correlation coefficient between group betweenness centrality and
average number of matches at final equilibrium, for each network and communication level.
Significance levels are given next to the values: (*) p < 0.05, (**) p < 0.01, (***) p < 0.001.
Best response dynamics are run by sampling one node at a time and choosing at random a
best response, until all nodes are at equilibrium. As suggestions are sent, receivers follow the
seed unconditionally. Multiplicative weight updates (MWU) keeps track of the players’ mixed
strategies. Finally, we test the correlation between the GBC of the set of receivers and the aver-
age player cost for simulations based on the behavioural model of players. Each dynamics is
run for n times on m random receiver sets.

Networks

Dynamics Receivers ba ws er sb

BR
(n = 200,m = 100)

10% -0.355 (***) -0.215 (**) -0.144 (*) -0.107
20% -0.449 (***) -0.137 -0.279 (***) -0.391 (***)

MWU
(n = 100,m = 100)

10% -0.220 (*) -0.282 (**) 0.007 -0.166
20% -0.119 -0.112 -0.099 0.113

Behavioural model
(n = 200,m = 100)

10% -0.549 (***) -0.176 (*) -0.363 (***) -0.419 (***)
20% -0.592 (***) -0.236 (***) -0.352 (***) -0.553 (***)

more appropriately the network. This is unlike the GBC which gives a starkly different
measure for both sets, and is thus a relevant metric for the effect of receiver positions.

We test this hypothesis by sampling at random k receivers on the network. A dy-
namics is run until an equilibrium is reached, at which point a colouring is selected
in the same manner as in the game. The k receivers immediately update to the seed,
and the dynamics is run again until a new equilibrium Sf is reached. We repeat this
procedure for m times and average the number of matches obtained in Sf . The set of
receivers is sampled n times, for k = {3, 6} and we compare the series of receivers’ GBC
with the corresponding average number of matches, using Spearman’s rank correlation
coefficient. The full table of results is presented in Table 3.1.

With best response (BR) dynamics, for almost all networks and all values of k, the
coefficient is significantly smaller than 0, indicating that a higher GBC translates to a
lower average number of matches. The dynamics is obtained by sampling uniformly
at random one node at a time and allowing this node to play her current best response
strategy, or one of them in case of ties.

The results are more contrasted with multiplicative weight update (MWU) dynam-
ics (Littlestone and Warmuth, 1994), perhaps reflecting the noisier approach of the pro-
cedure. The dynamics is carried over mixed strategies of the agents, or probability
distribution over their colour choices. At each step, every player’s mixed strategy is
updated by decreasing the probability of a colour that yields a higher cost against the
expected choice of one’s neighbours.
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FIGURE 3.6: Spearman correlation coefficient for networks of 20 nodes and three dynamics
(BR, MWU, behavioural model). For each network, 25 sets of 2 and 4 receivers are selected ran-
domly. For each set of receivers, each dynamics is simulated 50 times and its resulting statistic
is computed, the average number of matches for BR and MWU and the resulting average player
cost for the behavioural model. The correlation is obtained for each network between the GBC
of the receiver set and the resulting statistic. The boxplot represents the distribution of these
coefficients for each network family and number of receivers. For most networks, the correla-
tion coefficient is significantly below 0, indicating that more central receivers (as measured by
the GBC) tend to improve the play.

Finally, a behavioural model obtained from the experimental data (detailed in 3.3.1)
yields strong indication that the GBC of receivers is inversely correlated with the av-
erage of all player costs, computed with the same experimental scoring function. The
model is obtained from two logistic regressions encoding respectively the choice to
deviate from one’s current action and the subsequent colour choice.

3.3.3 Influence of network topology on costs

The three dynamics are repeated on 80 networks, 20 per type, with 20 nodes each.
The additional networks were generated from the same rules which yielded the four
networks in the study. For each of these networks, 25 sets of receivers were sampled
randomly for k = {2, 4}. For each set of receivers, the three dynamics were sampled
from 50 times to obtain the average number of matches resulting from BR and MWU
or the average player cost from the behavioural model. Once again, the correlation
between these statistics and the centrality of the receivers were computed and shown
to be significantly negative for most networks.
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FIGURE 3.7: Scatterplot of the measure of cost for each dynamics (average resulting number of
matches for BR and MWU, average player cost for the behavioural model). Simulations with 2
or 4 receivers appear on the same plot. Values of the network statistics and cost are rescaled for
plotting (no incidence on the Spearman correlation coefficient). As either the average distance
or the clustering coefficient of the network increases, the cost increases.

Figure 3.6 charts the distribution of these correlation coefficients for the two exper-
imental conditions and each of the four types. Again, contrasts exist between the four
different types. Preferential attachment networks such as ba have the strongest negative
correlation between centrality and efficiency of the suggestion. On the other hand, over
half of Watts-Strogatz networks have a positive correlation for the behavioural model
simulations with 2 receivers and typically do not feature as strong negative correlations
as the three other types in remaining treatments.

The differences are explained by the topology of the networks, as measured by
network statistics such as the clustering coefficient or the average distance between
two vertices. On the same set of 80 networks, a strong negative correlation is found
between any of the two previous statistics and cost (Figure 3.7 and Table 3.2). Thus, a
more clustered network leads to increased cost, as does a network with larger average
distance. Watts-Strogatz networks, among the four considered types, are indeed more
clustered and have higher average distance than any other type (Table 3.3).
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TABLE 3.2: Spearman rank correlation coefficient between one network statistic (average
distance or clustering coefficient) and a measure of system inefficiency (average number of
matches for BR and MWU, average player cost for the behavioural model), for each simulated
dynamics. Simulations were carried over 80 networks of 20 nodes each, 20 networks per type.
25 receiver sets were sampled for each network at sizes 2 and 4 (resp. 10% and 20% of nodes),
with each dynamics run for 50 times on each set. Averages are obtained over all receiver sets.
Significance levels are given next to the values: (*) p < 0.05, (**) p < 0.01, (***) p < 0.001.

Dynamics Statistic Correlation

BR
Average distance 0.647 (***)
Clustering coefficient 0.628 (***)

MWU
Average distance 0.362 (***)
Clustering coefficient 0.207 (**)

Behavioural model
Average distance 0.681 (***)
Clustering coefficient 0.628 (***)

TABLE 3.3: Average network statistics (average distance and clustering coefficient) for 80 addi-
tional generated networks, 20 per types.

Network Average distance Clustering coefficient

ba 2.12 0.208

ws 2.42 0.342

er 2.20 0.194

sb 2.23 0.180
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3.4 Discussion

The experiment investigates the question of coordination. Given a large landscape
of equilibria and transient configurations, can we expect agents guided by their own
interests to reach an efficient profile? The answer on that front is largely no, which
prompts a natural second question: Can this coordination be helped?

The answers here are more positive, with some nuances. A centralised messenger
with perfect information on the current state of the game, its efficient equilibria and able
to intervene once is shown to significantly affect payoffs in some cases. The topology
of the network matters, as does the position of the receivers, but the suggestion does
not appear to hurt the play in any case.

This result is the first complication to the relationship between decentralisation and
efficiency. A centralised, but local, suggestion can draw the play away from under-
performing equilibria. Can the same be said in more general games? Perhaps not, as
Figure 1.2 shows. Advertising a socially optimal configuration in the Pigou network
might not lead to any stable profile, with agents deviating back to the variable cost link
once they observe their (higher) cost on the constant latency link. Chapter 5 and 6 study
respectively the efficiency loss to the selfishness of agents and a measure to reduce the
loss via a toll mechanism, with its side-effects on inequality.



“You can plan a pretty picnic
But you can’t predict the weather”

Ms. Jackson, André 3000
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Chapter 4

How efficient are learning agents
following no-regret algorithms?

The graph colouring game shows experimentally that faced with a hard coordination
problem, a society of agents can reach more efficient states by making use of a weak
centralised suggestion. The suggestion induced the selection of more efficient equilib-
ria, as evidenced by the proportion of the play spent on a best response choice. How-
ever, the game has a particular structure, that of a potential game, where any best re-
sponse sequence of moves leads to a NE, efficient or not. In general games, it is not the
case that such a sequence converges to a NE. How can we then guarantee that the play
will reach good states?

We focus our attention on no-regret learning dynamics. Multiplicative Weight Up-
dates (MWU) (Young, 2004), introduced in Section 3.3.1 is a general algorithm that
yields no-regret dynamics for agents implementing it. MWU is widely applied: The
diversity of genetic properties and their evolution through time can be modelled by
MWU, as can be the selection of a good model in machine learning. Agents play re-
peatedly, observe the costs they incur from the play and decrease the probability of
selecting relatively high cost actions in the future. The algorithm has low complexity,
since it does not keep track of the sequence of play but only the total cost for each
strategy. In this sense, a society of agents implementing no-regret algorithms to govern
their play presents a high degree of decentralisation.

Contents of this chapter

The convergence to the set of NE cannot be guaranteed in general games with no-regret
agents, but the play does converge to a weaker set, that of coarse correlated equilibria
(CCE). Precise definition of the set is given in Section 4.1, as well as related concepts.
For now, an intuitive definition of a CCE is the following. The profile s is a CCE if
a centralised messenger is able to communicate to each agent its strategy si under s,
and agents must publicly commit to playing their strategy si before the play. In other
words, if agent i can improve her payoff by publicly not committing to si, even when
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NE
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Best CCE

Best CE
CE

CCE
All

Best NE
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Worst CE

Worst CCE

Price of anarchy

Value of learning
Price of learning

Price of m
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Value of m
ediation

Higher cost

Lower cost

Price of stability

FIGURE 4.1: The hierarchy of equilibrium concepts, with efficiency gaps. We introduce the Price
of Learning as well as the Value of Learning, to extend respectively the Price and the Value of
Mediation.

the other players can implement a coordinated “punishment” (since they all know i is
deviating), then s is not a CCE.

Convergence of the play to the set of CCE is guaranteed by agents following no-
regret learning algorithms. At each step, agents play their current strategy sti. They up-
date their strategy following the reception of their costs, and repeat. For large enough t,
the sequence (st)t approaches the set of CCE. In Section 4.2, we show a procedure that
converges to a NE while maintaining the no-regret property. This convergence is un-
natural and involves player elaborating tests to prove the honesty of their opponents.

To quantify the potential improvement of agents converging to general CCE instead
of NE, we must find the gap between the best NE and the best CCE. We introduce to
that effect in Section 4.3 the Value of Learning, or the gap from the best CCE to the best
NE. Results from Roughgarden (2015) provide the converse bound from the worst of
the CCE to the social optimum, via an extension of PoA-type bounds in (λ, µ)-smooth
games. A diagram showing the relationship between efficiency gaps is given in Figure
4.1.

However, the bounds of Roughgarden (2015) are surprisingly lax for no-regret learn-
ing. By expanding the regret term in Section 4.4, we find an immense number of time
steps are required for the bound to be effective in routing games. This theoretical result
becomes more pertinent as we study the regret of players in a real routing game, in
Chapter 5.
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4.1 Definitions

We first give the definition of a correlated equilibrium (Aumann, 1974).

Definition 4.1.1. A correlated equilibrium (CE) is a distribution π over the set of action
profiles S =

∏
i Si such that given any player i and pair of distinct strategies si, s′i ∈

Si, si 6= s′i, ∑
s−i∈S−i

ci(si, s−i)π(si, s−i) ≤
∑

s−i∈S−i

ci(s
′
i, s−i)π(si, s−i)

Given now is the definition of coarse correlated equilibrium (Young, 2004).

Definition 4.1.2. A coarse correlated equilibrium (CCE) is a distribution π over the set of
action profiles S =

∏
i Si such that given any player i and any strategy si ∈ Si,∑

s∈S
ci(s)π(s) ≤

∑
s−i∈S−i

ci(si, s−i)πi(s−i)

where πi(s−i) =
∑

si∈Si π(si, s−i) is the marginal distribution of π with respect to i.

The next definitions outline a framework to what “learning” means for agents in-
volved in a game. They stem from the literature of online algorithms, where an agent
with a restricted set of actions repeatedly makes choices that yield a certain payoff.

An online learning algorithm is an online algorithm for choosing a sequence of
elements of some fixed set of actions, in response to an observed sequence of cost func-
tions mapping actions to real numbers. The t-th action chosen by the algorithm may
depend on the first t− 1 observations but not on any later observations; thus the algo-
rithm must choose an action at time t without knowing the payoffs of any actions at
that time. More formally,

Definition 4.1.3. An online sequential problem consists of a feasible set F ∈ Rm, and
an infinite sequence of cost functions {c1, c2..., }, where ct : Rm → R.

At each time step t, an online algorithm selects a vector xt ∈ Rm. After the vector
is selected, the algorithm receives f t, and collects a payoff of f t(xt). All decisions must
be made online, in the sense that an algorithm does not know f t before selecting xt,
i.e., at each time t, a (possibly randomised) algorithm can be thought of as a mapping
from a history of functions up to time t, f1, . . . , f t−1, to the set F .

Given an algorithmA and an online sequential problem (F, {c1, c2, . . . }), if {x1, x2, . . . }
are the vectors selected by A, then the cost of A until time T is

∑T
t=1 c

t(xt). Regret com-
pares the performance of an algorithm with the best static action in hindsight.

Definition 4.1.4. The regret of algorithm A at time T is defined as

R(T ) =

T∑
t=1

ct(xt)−min
x∈F

T∑
t=1

ct(x)
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An algorithm is said to have no-regret or that it is Hannan consistent (Young, 2004),
if for every online sequential problem, its regret at time T is o(T ). For the context of
game theory, which is our focus here, the following definition of no-regret learning
dynamics suffices.

Definition 4.1.5. The regret of agent i at time T is defined as

R(T ) =
T∑
t=1

ci(s
t)− min

s′i∈Si

T∑
t=1

ci(s
′
i, s

t
−i)

We will also make use of Hoeffding’s inequality (Hoeffding, 1963) and the Borel-Cantelli
lemma (Émile Borel, 1909).

Theorem 4.1.1 (Hoeffding’s inequality). Suppose (Xk)
n
k=1 are independent random vari-

ables taking values in the interval [0, 1]. Let Y denote the empirical mean Y = 1
n

∑n
k=1Xk.

Then for t > 0

P(|Y − E[Y ]| ≥ t) ≤ 2 exp
(
− 2nt2

)
Theorem 4.1.2 (Borel-Cantelli). Let (An)∞n=1 be a sequence of events in a probability space.
Suppose

∑
n P(An) < ∞, then P(lim supn←∞An) = 0, or, equivalently, with probability 1,

only a finite amount of events An will happen.

4.2 Convergence to Nash by no-regret dynamics

A key question in the analysis of extremal behaviour of no-regret dynamics in general
games is whether there exists a hidden implicit tension between achieving no-regret
guarantees against malicious agent behaviour while at the same time converging to
Nash equilibrium in self-play. The following theorem establishes that this is not the
case.

Theorem 4.2.1. In a finite game with N players, for any ε > 0, there exist learning dynamics
that satisfy simultaneously the following two properties:

• Against arbitrary opponents their average regret is at most ε,

• In self-play they converge pointwise to a ε-Nash equilibrium with probability 1.

Proof. We divide the play in four stages. In the first stage, players explore their strategy
space sequentially and learn the costs obtained from every action profile. In the second
stage, they communicate their costs, using a procedure akin to cheap talk (Aumann
and Hart, 2003). For example, they can use their actions as encoders for the payoffs
previously revealed during the exploration stage, and transmit the knowledge they
gained then to the other players. In the third stage, they compute the desired ε-Nash
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equilibrium that is to be reached, for ε > 0. In the fourth stage, players are expected
to use their equilibrium strategies and they monitor other players in case these deviate
from equilibrium play. Below the proof, we give a pseudocode version of the algorithm
implemented by the players, to summarise the four stages (in Algorithm 1)

The players are expected to follow a communication procedure and implement a
no-regret strategy in the case of another player’s deviation. Since the first three stages
have finite length (though very long: exponential in the size of the cost matrix (Hart
and Mansour, 2007)), the no-regret property follows. The restriction on convergence to
an ε-NE, instead of a mixed NE (so ε = 0) arises from the fact that even games with
rational costs can possess equilibria that are irrational (Nash, 1951).

Settlement on a particular NE can be decided by a fixed rule before play, such as
lexicographically in the players’ actions or the NE that has the lowest social cost.

In the fourth stage, players have settled on an equilibrium and will implement it. To
fulfil the requirement of pointwise convergence, it is not enough for the players to stick
to a deterministic sequence of plays. We want them to pick randomly a move from their
equilibrium distribution of actions. During this process, the generated sequence of play
of an opponent may not match his equilibrium distribution. In that case, the players
need to decide whether the opponent has been truthful but “unlucky” or deliberately
malicious.

We achieve this by dividing the fourth stage in blocks of increasing length. Let
n ∈ N denote the block number, we set block n to have a length of l(n) = n2 turns. On
these blocks, the players will make use of tests to verify that all other opponents are
truthful, in the sense that they follow the prescribed mixed NE. We want to find a test
such that a truthful but possibly unlucky player will fail almost surely a finite number
of these tests, while a malicious player will almost surely fail an infinite number of
these.

We first look at the case where we have N players with only two strategies, 0 and
1. We can then identify the equilibrium distribution of a player i, to the probability p∗i
that he chooses action 1.

Suppose the play is at the n-th block and player i chooses to implement the mixed
strategy pi. Let (Xi

k)k=1,...,l(n) denote the sequence of strategies chosen by player i, such
that Xi

k ∼ B(pi) and all are independent. Let Y i
n be the empirical frequency of strategy

1 during block n.

Y i
n =

1

l(n)

l(n)∑
j=1

Xi
j

If the player is truthful and implements the prescribed NE, then we have pi = p∗i
and we expect the empirical frequency of strategy 1 Y i

n to be close to p∗i . Otherwise, a
malicious player will choose pi 6= p∗i .
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Let Ain denote the event Ain = {|Y i
n − p∗i | ≥ tn}. In other words, we are trying to de-

termine how far the empirical frequency of strategy 1 is from the expected equilibrium
distribution. If the event Ain is realised, then the test is failed: the empirical distribu-
tion of play is too far from the expected NE distribution. The idea is to make block
after block the statistical test more discriminating, i.e. get a decreasing sequence (tn)n

such that a truthful player will only see a finite number of events Ain happen, while a
malicious one will face an infinite number of failures.

We claim that picking tn = n−α with 0 < α < 1 is enough. Indeed by Hoeffding’s
inequality we have that

P(Ain) ≤ 2 exp
(
− 2n2t2n

)
if the player is truthful (remember that block n has length l(n) = n2).

Extending the proof to the case where a player i has finite strategy set Si is not
hard. Let (pis)s∈S be the distribution that the i-th player decides to implement, while
(pi,∗s )s∈S is the NE distribution for player i. Let Xi,s

k follow a multinomial distribution
of parameters (pis)s∈S . Then Y i,s

n is the empirical frequency of strategy s during block
n for player i. We define events

Ai,sn = {|Y i,s
n − pi,∗s | ≥ tn}.

Then we define our test Ain to be ∪s∈SiA
i,s
n . Using Hoeffding’s inequality again we

obtain:

P(Ain) = P(∪s∈SiAi,sn )

≤
∑
s∈Si

P(Ai,sn ) ≤ |Si| × 2 exp(−2n2t2n)

Thus
∑

P(Ain) < +∞ for 0 < α < 1, so by Borel-Cantelli we know that the Ain will
only ever happen a finite number of times if the player is truthful, i.e. if E[Y i,s

n ] = pi,∗s .
To satisfy the no-regret property, we do the following: if one of the opponents failed

the statistical test described earlier, then all players will implement a no-regret strategy
for a time n2+δ to compensate for that. We call this block of size n2+δ a compensating
block.

If a finite number of tests fails, then the whole sequence satisfies the ε-regret prop-
erty, since players are arbitrarily close to the ε-Nash equilibrium. When one of the tests
fails, say, at block n, the maximum regret accumulated is of size n2. The following com-
pensating block guarantees that overall regret has grown by a value bounded by n1−δ,
i.e., sublinearly.

We also guarantee that the expected turn number that ends the last of the truthful



47

player’s potential failed block is not infinity. Indeed let Bn be the event that the last
failed block is the n-th one. Then, if An = ∪Ni=1A

i
n,

P(Bn) = P(An)× P(Acn+1) . . .

≤ 2 exp(−2n2t2)× 1 . . .

≤ 2 exp(−2n2t2)

We use Ac to denote the complement of event A. The first equality holds by inde-
pendence of the blocks, the second inequality is true from Hoeffding’s and the fact that
a probability is less or equal to 1. We then define L to be the index of the turn that ends
the last compensating block of a truthful player. L is a random variable on the integers.
We have

E[L] ≤
∑
n

( n∑
k=1

(k2 + k2+δ)
)
× 2 exp(−2n2t2) < +∞

We bound E[L] by assuming a truthful player got every test wrong up to the latest
failed one. Then the last turn L occurs at index

∑
n(n2 + n2+δ). We multiply this by

the bound on P(Bn) and use the property of the exponential to conclude that E[L] is
bounded.

4.3 The Value of Learning

4.3.1 Social welfare gaps for different equilibrium concepts

We define a measure to compare equilibria obtained under no-regret algorithms to
Nash equilibria: the value of learning. This measure quantifies by how much the players
are able to decrease their costs when relaxing the equilibrium requirements from Nash
to CCE.

Definition 4.3.1. Define the value of learning in cost games VoL as the ratio of the social
cost of the best Nash equilibrium to that of the best coarse correlated equilibrium.

VoL(Γ) =
best NE

best CCE

Since the set of NE is included in the set of CCE, then the best NE in terms of social
cost will always be greater than the best CCE. Thus we take the ratio so that the value
of learning is always greater than or equal to 1, a convention also found in other papers
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Data: N players
Data: ε > 0
Data: 0 < α < 1
Data: δ > 0
Step 1: Exploration
begin

while One profile has not been played do
Play new profile

end
end
Step 2: Communication
begin

Players communicate their costs by encoding them using their actions
end
Step 3: Computation
begin

The ε-Nash Equilibrium to be played is computed from the costs
end
Step 4: Implementation
Data: ε-NE p∗

begin
n← 1 // n is the block number
while n > 0 do

l← n2

t← n−δ

Ci,s ← 0, ∀i, s // C counts use of strategy s by player i
for j ← 1 to l do

Players move according to S = (s1, . . . , sN )
for i← 1 to N do

Ci,S(i) ← Ci,S(i) + 1

end
end
if ∃i, s such that |Ci,sl − p

i,∗
s | ≥ t then

All players play a no-regret procedure for n2+δ rounds
end
n← n+ 1

end
end

Algorithm 1: Proof of Theorem 4.2.1. Players converge to an ε-NE in self-play while
maintaining no-regret.
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related to the price of anarchy (Ashlagi, Monderer, and Tennenholtz, 2008; Bradonjic
et al., 2009).

Conversely, we define the price of learning as the ratio of the worst CCE to the worst
NE.

Definition 4.3.2. Define the price of learning PoL in a cost game Γ as the ratio of the
social cost of the worst coarse correlated equilibrium to that of the worst Nash equilib-
rium.

PoL(Γ) =
worst CCE
worst NE

The ratio of the worst CE to the worst NE was previously defined as the price of
mediation (PoM) (Bradonjic et al., 2009). With the help of Proposition 4.3.1, we can
extend this result to learning algorithms that possess the no-regret property.

4.3.2 CE = CCE for N agents 2 strategy games

We present a result allowing us to collapse two equilibrium classes in a specific case:
any number N of players having 2 strategies each.

Proposition 4.3.1. For games where all players have only two strategies, the set of coarse
correlated equilibria is the same as the set of correlated equilibria.

Proof. Let i be one of the players, suppose his two strategies are A and D, where we
pick D to be the deviating one. Then the requirement for correlated equilibrium states
that ∑

s−i∈S−i

ui(s−i, D)π(s−i, A) ≥
∑

s−i∈S−i

ui(s−i, A)π(s−i, A)

while the corresponding one for coarse correlated equilibrium is∑
s−i∈S−i

ui(s−i, D)(π(s−i, A) + π(s−i, D)) ≥

∑
s−i∈S−i

(ui(s−i, D)π(s−i, D) + ui(s−i, A)π(s−i, A))

which is equivalent after removing the
∑

s−i∈S−i ui(s−i, D)π(s−i, D) term on both sides.

4.3.3 The VoL in 2x2 games

Denote by Γ2×2 the class of 2 × 2 games. We are interested in the best-case scenario:
how high the ratio of the value of learning can get for all 2× 2 games.

Definition 4.3.3. Denote by VoL(Γ2×2) = supΓ∈Γ2×2
VoL(Γ) the value of learning for

the class of 2× 2 games.
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FIGURE 4.2: Histogram of values of learn-
ing obtained over 107 simulations for 2× 2
games. A log10 scale is used for the y-axis.
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FIGURE 4.3: 2D histogram of VoL and
PoL over 106 simulations for 2 × 2 games.
The count legend is to be interpreted as a
power of ten (where a count of 5 is 105 ob-
servations)

Proposition 4.3.2. VoL(Γ2×2) ≥ 3
2

Proof. Consider the following cost game for x > 1

L R( )
T 0, x− 1 x, x

B 1, 1 x− 1, 0

The game admits three NE: (T, L), (B,R) and ((0.5, 0.5), (0.5, 0.5)). The first two have
social cost equal to x− 1 while the mixed equilibrium’s is x. The minimum social cost
is thus obtained for the pure equilibria, at x− 1.

The correlated equilibrium that minimises social cost assigns probability 1/3 to
every action profile except for (T,R). Its social cost is 2x/3. Hence, in this game,
VoL = 3(x−1)

2x . Taking x −→ +∞, we derive VoL(Γ2×2) ≥ 3
2 .

We conjecture that this 3
2 bound is tight, i.e., there is no 2 × 2 game Γ such that

VoL(Γ) > 3/2. To support this claim, we run numerical simulations on games gen-
erated from a random uniform distribution. A notable result is the predominance of
games for which the ratios are 1, i.e. mediation does not better the social welfare/cost.
We then observe higher ratios at a lower rate, hence our histograms look like those of
a power law (Figure 4.2). The obtained ratios come close to the 3/2 threshold, without
going further (only a few ratios approaching 1.4 were observed over 107 simulations).

Proposition 4.3.3. PoL(Γ2×2) = 2
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Proof. By Proposition 4.3.1, the social cost of the worst CE is equal to the social cost of
the worst CCE, since the set of CE is the same as the set of CCE. Then by (Bradonjic
et al., 2009), we have that PoL(Γ2×2) = 2.

In Figure 4.3 we present a 2D histogram of the joint distribution of the VoL and PoL.
106 games were generated and for each we compute both values. The size of the dot is
representative of how many games possess particular values for the VoL and the PoL.

4.3.4 The VoL in larger games

Next, we examine larger games, i.e., games with more than 2 players and/or more than
2 strategies per player. Let Γm1,m2 denote a 2 player game with respectively m1 and m2

strategies for each player.

Proposition 4.3.4. For sets of games Γm1,m2 , max(m1,m2) > 2, we have VoL(Γm1,m2) =

+∞.

Proof. Consider for ε < 1
2 the game

L C R( )
T 1− ε, 1− ε 2ε, 3ε

2 2ε, 1
2

B 1
2 , 2ε ε, 1− ε 1, 2ε

The game admits three NE: (L,B), ((0, 1), (2/3, 0, 1/3)) and (2/3, 1/3), (0, 1−ε, ε). Of
the three, the latter has the lowest social cost, equal to 1/3 + o(ε), where o(ε) −→ε→0 0.

We can define the following correlated equilibrium π:

L C R( )
T 0 1− 5ε

2 ε

B ε 0 ε/2

The best social cost in a correlated equilibrium will be lower than that of π, which
is o(ε). We also have that the best social cost in a CCE will be lower than that of a CE.
Thus taking ε→ 0, we obtain an unbounded VoL.

The set of CE being included in the set of CCE, we can again extend some results
from previous papers to coarse correlated equilibria.

Proposition 4.3.5. For games Γm1,m2 , max(m1,m2) > 2, we have PoL(Γm1,m2) = +∞.

Proof. Since CE ⊆ CCE, the social cost of the worst CCE is higher than that of the worst
CE. By (Bradonjic et al., 2009) we have that PoM = +∞, hence PoL = +∞.
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FIGURE 4.4: Histogram of ratios best
NE/best CCE (VoL) obtained over 106 sim-
ulations for 3× 3 games.
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observations). We zoomed in the portion
[1, 2.5]2 to show finer results.

We run a number of simulations to see how VoL is distributed for random games
(Figure 4.4). We have also included a 2D histogram (Figure 4.5) showing (VoL, PoL)
for a number of generated games. Some sampled games have high VoL and some high
PoL but not both, indicating a competitive relationship between the two quantities.

4.4 Limits of smoothness bounds for congestion games

We look at the (λ, µ)-bound in Roughgarden (2015) where agents implement no-regret
learning procedures. In this case, it is shown that

1

T

T∑
t=1

E[C(st)] ≤ λ

1− µ
E[C(s∗)] +R(T )

with R(T ) →T→∞ 0. In other words, after a large enough T time steps, the bound
for the cost under no-regret learning naturally converges to the same bound for Nash
equilibria. This implies that the PoA over the set of coarse correlated equilibria is the
same as the PoA over the set of NE.

But what is in this bound? When agents implement a no-regret strategy and the
cost in each time step is ct : S → R, with ct(s) ∈ [0,M ], we can show

E[
T∑
t=1

ct(st)] < E[min
s∈S

T∑
t=1

ct(s)] + (M + 1)
√
T log(n)
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FIGURE 4.6: The tighter the desired bound, the larger T time steps must take place to achieve
it.

where n is the number of strategies available to the agents (see also (Cesa-Bianchi
and Lugosi, 2006, Sections 2.6, 2.8, Remark 2.2) for a discussion on why the term
O(M

√
T log(n)) cannot be improved upon when no preliminary information is avail-

able on the sequence of observed payoffs).
So

1

T

T∑
t=1

E[C(st)] ≤ λ

1− µ
E[C(s∗)] +

1

T

T∑
t=1

∆(st)

1− µ

≤ λ

1− µ
E[C(s∗)] +

N(M + 1)
√

log(n)

(1− µ)
√
T

where

1

T

T∑
t=1

∆(st)

1− µ
=

1

T (1− µ)

T∑
t=1

N∑
i=1

δi(s
t)

=
1

T (1− µ)

T∑
t=1

N∑
i=1

(Ci(s
t)− Ci(s∗i , st−i))

≤
N(M + 1)

√
log(n)

(1− µ)
√
T

and N is the number of agents in the system.
Translated to the scale of Singapore, where approximately N = 2 million individ-

uals commute each day, the N
√

log(n) term is already on the order of 106. This is
additionally scaled by the upper bound of the cost function, M . If we desire R(T ) ≤ ε,
we must have

N(M + 1)
√

log(n)

(1− µ)
√
T

≤ ε
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⇔ T ≥
(N(M + 1)

√
log(n)

(1− µ)ε

)2

which for ε relatively small, of the order of 10−3 say, implies a number of time steps
greater than 1018! For comparison, the age of the Universe in days is of the order of
1012. This appears unreasonable. We represent in Figure 4.6 the number of time steps
T required to achieve a certain approximation ε.

4.5 Discussion

The property of no-regret is shared by many natural learning procedures implemented
in multi-agent settings. Due to their convergence (to the set of coarse correlated equi-
libria) they are useful in practice. But if we look closer, it is not clear where this con-
vergence leads the play. We have first shown that we can steer it using a somewhat
unnatural algorithm to any NE of the one-shot game, while maintaining the no-regret
property. In the next sections, we have understood better how the class of CCE relates
to no-regret dynamics, and to the smaller class of CE.

This led us to define more general measures of the price of anarchy: if it is hard to
predict where the play following no-regret dynamics will go, we are at least able to give
some price of anarchy-type bounds on the resulting payoffs. We have concluded with
experimental results that show a concentration of small ratios, indicating a closeness to
NE payoffs. Proving our conjecture about the Value of Learning for 2×2 games remains
an open question, with the lower bound of 3/2 derived in 4.3.3, which we believe to be
tight.



“Meanwhile along Orchard Road, bit of a traffic snarl building up with the evening rush hour...
Otherwise it’s been yet another beautiful day here on our little island paradise!”

The Art of Charlie Chan Hock Chye, Sonny Liew
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Chapter 5

What does a large scale experiment
on Singapore’s routing network tell
us about the efficiency of the system
and the regret of its users?

Chapter 3 presented a controlled experiment where a game with large price of anarchy
does not settle in the most inefficient states and can be nudged towards even better
performing equilibria. On the other hand, Section 4.4 showed that no-regret bounds
are very weak for large-scale congestion games. This chapter continues our exploration
with an analysis of a “snapshot” of a large, real system, supported by a unique dataset
on routing in Singapore, to answer what efficiency is in practice.

Let us first frame the discussion in this chapter. Since its inception, the literature
following price of anarchy sought to establish theoretical performance guarantees on
wider and wider classes of games. It obtained critical results showing that for con-
gestion games (Rosenthal, 1973), which represent for instance the game played on a
network by commuters—formally defined in Section 2.6—, the cost of an equilibrium
is bounded away from optimal by a constant (Koutsoupias and Papadimitriou, 1999;
Roughgarden and Tardos, 2002). This remains true even when agents follow no-regret
learning strategies, as presented in Chapter 4 (Roughgarden, 2015).

These findings have strong implications for the design of routing networks, limit-
ing the improvements that a central planner can achieve. But as they stand, they are
incomplete as long as the predictive power of PoA has not been established in real
networks these models represent. What does 2.151, the PoA upper bound for routing
games with cost functions classically employed to represent congestion on real routes,
mean in practice?

This work more generally leverages a granular data source, the National Science
Experiment, to investigate questions related to efficiency in routing games. The data
informs new metrics derived from concepts familiar in routing games, such as regret.
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As such, this work is inscribed in the current effort to perform econometric measure-
ments and experiments related to the larger algorithmic game theory literature (Bajari,
Hong, and Nekipelov, 2013; Syrgkanis, 2015; Nekipelov, Syrgkanis, and Tardos, 2015).

Contents of this chapter

Our goal is to perform the first large scale, multimodal and granular experiment on
routing in a city. The data is collected by distributing sensors to students throughout
Singapore and incentivising correct use. Noisy by nature, the data is cleaned thor-
oughly with a set of validated algorithms until a collection of over 34,000 morning
trips are obtained. References on Singapore’s transportation landscape, the experiment
and data cleaning processes are presented in Section 5.1.

Three sections are devoted to building increasingly sophisticated measures of the
network to check for its equilibrium properties (Section 5.2), the individual optimality
of commuters (Section 5.3) and finally the optimality of the system itself (Section 5.4).
Before proceeding, we provide an overview of each section.

Equilibration of the system The price of anarchy is concerned with the cost of a game
at a Nash equilibrium.1 However, we first ask for a weaker definition of equilibrium,
understood as stasis. Are agents currently updating their routing decisions? If not, this
behaviour is consistent with a stationary point reached, for instance, by best response
strategies.

Individual optimality Equilibration is the first step towards framing the data in game-
theoretic terms. We now ask if the system is such that agents are close to optimality in
the following sense: if two agents leave from the same origin around the same time,
with the same mode of transportation, going to the same destination, are their travel
times comparable? We must first observe that this optimality criterion is weaker than
one which would ask of agents to choose the best route possible, given the congestion
on all the links. The data however may not provide us with such information if we
sample a limited set of agents on the network. But as sample sizes grow and groups
of comparable subjects get larger, we must be more and more confident that the fastest
student approaches strong optimality.

It turns out that the weak optimality criterion has close ties with regret, interpreted
here as hindsight with respect to the best action of another comparable subject instead
of any best route. If being at a Nash equilibrium implies that all agents have zero regret,
the converse does not hold in general. Once again, we do not show agents are at the
game-theoretic Nash equilibrium, but a low regret, given the extensions of PoA in such

1For a routing game Γ, all equilibria have equal cost (Section 2.6)
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situations (Roughgarden, 2015), guarantees that our estimate of the numerator of PoA,
concerned with the cost at equilibrium, cannot stray too far from its real value.

System optimality And yet, we shall not directly attempt to estimate the PoA. Once
again, the denominator, which is the cost at optimum, asks more from our data than
is available. We must be confident about the demands of all source-destination pairs,
not only the ones in our dataset, to compute an appropriate optimal assignment for the
subjects. Once obtained, the estimate of PoA yields the inefficiency loss due to selfish
routing.

For a real network however, we argue that PoA does not adequately measure the
loss of efficiency due to tragedy of the commons effects. The demands on the road
resources are such that if it is individually efficient to join the network, it may not
be collectively optimal to do so. As more agents join, the resources become stressed
while latencies increase. In contrast, PoA is optimised in cases when edges are either
empty or completely saturated (Colini-Baldeschi et al., 2017), the latter being hardly
what one would describe an efficient network. For this reason, we introduce the Stress
of Catastrophe (SoC), an upper bound to the PoA which measures system stress. We
estimate low SoC, lower indeed than the theoretical bounds on PoA, casting further
doubt on its applicability for real networks.

Result Snippets

• We show that most subjects use the same means of transportation across trips
and that a large number of them consistently selects the same route. For example,
when controlling for those who use consistently the same means of transportation
across different days, the percentage of subjects selecting the same route is very
high, in the order of 94%. (see Section 5.2).

• The empirical regret distribution has a median value of 5 minutes 15 seconds and
mean approaching 7 minutes for an average travel time of around 27 minutes (see
Section 5.3).

• We define and estimate the Stress of Catastrophe for subjects in private trans-
portation across various scenarios. Even at its most pessimistic, the SoC is much
lower than the corresponding PoA bound on real road networks. We find a
marked contrast when discriminating by mode of transportation (see Section 5.4).
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5.1 The Singapore National Science Experiment

5.1.1 A short guide to transportation in Singapore

We briefly discuss here some salient points on the topography of Singapore and its
transportation network, to provide some context for the coming empirical results. All
data is collected from data.gov.sg, for which we give the latest available measure-
ment.

Singapore is a city state home to 5.6 million inhabitants (2017), of which 4 million are
part of the resident population. The Land Transportation Authority (or LTA) oversees
the questions related to transportation in the city. According to its classification, rail,
bus and taxi modes are all considered public transportation, however, in the following,
taxis will be understood as being private vehicles. Five mass rapid transit (MRT) lines
and three light rail transit (LRT) lines operate in Singapore, for a total of 230 kilometres
of rail (2017). Bus services are present throughout Singapore with a wide coverage (260
lines) and high frequency (under 15 minutes at peak hours, with half arriving under 10
minutes).

Private transportation in Singapore is controlled by two major mechanisms. The
Certificate of Entitlement (COE) is a 10-year license auctioned at regular intervals to
compensate exactly for the de-registration of motor vehicles (motorbikes, individual
cars and trucks). The Electronic Road Pricing (ERP) is a dynamic tolling mechanism
active during peak hours, with gantries located around the city centre and major ex-
pressways. Roads cover approximately 12% of land, with 550,000 private cars, 50,000
rental or for-hire cars and 25,000 taxis registered in 2016. Related to the number of
households in Singapore, this entails that there is on average one car in 45% of house-
holds, circulating for 17,500 kilometres per year (2017). Public transportation is widely
employed, with over 60% of trips completed with public transportation.

5.1.2 Data collection

The National Science Experiment (NSE) is a large-scale experiment realised in SUTD in
collaboration with the National Research Foundation of Singapore and several industry
experts. A custom-built sensor, SENSg, was designed to be carried throughout the day
by students from primary, secondary and junior colleges, for one week each. Over
90,000 students took part in the experiment.

The sensor records at high frequency (up to every 13 seconds) a measurement made
up of its location (determined by scanning surrounding MAC addresses) as well as sev-
eral environmental factors, such as relative temperature and humidity, noise levels and
illumination. Although this study focuses primarily on the geographical data, the ad-
ditional factors are notably used in the machine learning-assisted mode identification

data.gov.sg
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algorithm described below in Section 5.1.5. Overall, over 130 million measurements
were recorded.

5.1.3 Limitations of active methods of collection

The goal of the experiment is to overcome previous limitations of self-reported (or ac-
tive) transportation data (e.g., via Household Interview Transportation Surveys). Ac-
tive reporting tasks subjects with providing the researchers a detailed account of their
trips, including the nature of the trip. This provides verifiable information with the
limitation that subjects are likely to under-report their trips, due to the difficulty of
logging their activities consistently (Du and Aultman-Hall, 2007).

Passive trip reporting offers a promising alternative that also allows for scale. Raw
data only is collected periodically, such as the agent’s latitude and longitude. It is
then the task of the researchers to do additional transformations of the data to obtain
meaningful statistics. The burden of verifying subject logs to constitute a dataset is
avoided, which makes the procedure more suitable for large data sets.

Previous studies employed passive trip reporting. For instance, Axhausen et al.
(2003) track private vehicles of their subjects. A trip is defined as a sequence start-
ing from the powering on of the car and ending when the contact is off—with addi-
tional criteria to filter out smaller trips or include stops during which the car is left
on. Schüssler and Axhausen (2008) track the subject’s location instead of their vehi-
cle, which compounds processing difficulties due to the continuous nature of human
mobility. The authors apply a smoothing method on the geographical data points to
overcome the deficiencies of GPS-based data collection, also noted by Jun, Guensler,
and Ogle (2006).

One of the most vexing problems facing researchers studying large-scale mobility
patterns is the unwillingness of participants to spend their smart-phone battery energy
for the collection of location data from power-hungry GPS services. Several research
groups (including this one) have proposed down-sampling location estimates as a so-
lution (Jariyasunant, Sengupta, and Walker, 2012; Kumar et al., 2013). An alternative
approach was taken in the design of the NSE sensor, described in detail in Section 5.1.2.
MAC addresses of surrounding Wi-Fi hotspots are scanned and recorded to locate the
sensor’s position. This method is shown to be accurate to within 20 to 30 metres and
tends to be more effective at lower speeds (Tsui et al., 2010).

Passive methods collect raw data from the subjects, in the background. Given the
size of the dataset and the often noisy nature of its collection, the data must then be
interpreted by the analysts using algorithms. We describe in the next two subsections
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two algorithms yielding semantic data out of the collected raw data. Finally, we ad-
dress concerns about the representativeness of the sample (students in Singapore) and
limitations of the dataset for our research questions in Section 5.1.6.

5.1.4 Trip identification

The collected data is a list of raw geographical positions (latitude and longitude). First,
smoothing algorithms eliminate the noise from the stream of locations. Second, a dwell
time-based algorithm decides on a list of Point of Interests (POIs) (latitude and longi-
tude). These POIs are locations where the subject spent a significant amount of time at
low velocity, i.e., a stationary activity in a smaller area.

To identify home and school locations in the list of POIs, additional information
such as the timestamp is checked. Late night measurements typically hint at the home
location, while the sensor spends the clearest part of daytime hours near or at school.

5.1.5 Mode identification

The mode identification algorithm uses a mix of the measurements operated by the
sensor and geographical information, such as the position of train lines and roads or
bus and train stations. The information is taken as input by a machine learning proce-
dure based on random forests, able to discriminate for our purposes between walking,
travelling by train, by bus or by car. Accuracy reaches 85% on a validation set, indeed
superior to similar recent studies (Sankaran et al., 2014; Shin et al., 2015; Zhu et al.,
2016). Figure 5.1 presents a trip as a collection of segments.

5.1.6 The clean trip dataset: Opportunities and limitations

The NSE 2016 dataset contains measurements from 49,526 students who participated
in the experiment and wore the sensor. The experiment was designed to analyse ho-
mogeneous users, i.e., primary, secondary or junior college students, reducing the com-
plexity of understanding mobility patterns. This work focuses on morning travels of
students who get to their schools from their homes. Two main reasons were considered
for this choice.

First, in the following analyses, the latency, or duration of the trip, is considered
as the primary “cost” of the subjects, discounting any other monetary cost. Morning
trips typically feature subjects optimising to minimise their latency. Evening trips are
more sparse since the battery of sensor is expected to be charged at night while the
subject is home. By the end of the day, if the battery has run out, the evening trip is not
recorded. We have however in the dataset 21,065 samples for which both morning and
evening trips are recorded. For these pairs, the average duration of the morning trip is
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FIGURE 5.1: The subject walks from home (in red) to a bus stop to catch a train, after which a
bus is taken to reach destination (in blue). Circles along the way represent one data point each.

29 minutes and 6 seconds, while it is 33 minutes and 33 seconds for the evening trip,
with a greater average number of stops (possibly extraneous activities).

Second, the data source—students of Singapore—is not an exact representation
of the Singapore population. However, their exposure to traffic during the morning
hours—which are effectively the most congested conditions—allows us to infer prop-
erties of the system. The geographical distribution of their homes broadly correspond
to the population density of Singapore, and thus provides additional confidence that
the traffic and public transport conditions experienced by the subjects in the dataset are
similar to other commuters in Singapore.

To ensure the quality of our empirical results, we perform a strict data cleaning
process. For instance, trips where too few points (e.g., at a frequency greater than 1 per
minute) were recorded are filtered out, as are trips where many students have simulta-
neous behaviour, indicating school buses. A total of 34,121 clean trips are considered,
with 16,563 unique students and 89 schools. The number of students by school type is
approximately equally distributed, hence capturing the routing behaviour of students
over a large space in Singapore.

5.2 Equilibration and empirical consistency of routing decisions

The first key question we address is the equilibrium property of the Singapore road
network. We ask whether the system has reached stasis, in the sense of consistency
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TABLE 5.1: Number of students using consistently the same mode of transportation

Type Number of students

Public transport only 3,417

Private transport only 2,174

Walk only 296

Multimode 491

Total ≥ 2 trips 6,378

Total ≥ 1 trip 11,439

of routing decisions by the subjects. If the system is at equilibrium, we should ex-
pect that the subjects’ routing decisions do not vary greatly between successive days
of study. We investigate the issue from two positions. First, we compare the modes
of transportation selected by each subject over the days of the experiment. Second,
we improve the previous result by considering whether routing choices in terms of the
selected path are identical over experiment days.

Each subject carries the sensor for up to 4 days in a week, allowing us to compare
the morning trips taken by the same subject between different days. Since the presence
of noise in the sensor data and trip detection algorithm does not guarantee us that the
whole week of experiment will be available, we filter out subjects for which only one
morning trip is available. In our clean dataset, we have 16,563 individual subjects, out
of which 11,439 have two or more trips logged in.

We first compare the transportation modes selected by subjects during the morning
trips. In Table 5.1, we differentiate the 6,378 subjects who have consistently used the
same mode of transportation in a week. These subjects represent 56% of the group that
has two or more trips reported.

In a second and more granular analysis, we compare the routing decisions of the
subjects at road level. Our aim is to determine whether each subject selects the same
route consistently to reach school in the morning. To achieve this task, we need a dis-
tance da,b measuring the similarity between two sequences a = (ai)

n
i=1 and b = (bj)

m
j=1

of coordinates. If the sequences are close, we can conclude that the same route is se-
lected. For subjects employing the same mode of transportation across all days of ex-
periment, the percentage of subjects selecting the same route is very high, in the order
of 94%. We detail in Appendix B.1 how the distance between two routes in computed.
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5.3 Individual optimality and empirical imitation-regret

Analysing the consistency of routing decisions across several trips gives a coarse pic-
ture of how well-founded these decisions are. It is possible to perform an additional
check on the individual optimality of the subjects’ decisions from the data itself. One
can observe how different is the behaviour of comparable subjects, i.e., subjects who
share the same origin, destination, time of travel and mode of transportation. As a
necessary condition for equilibration of the system, we should expect to find these dif-
ferences to be small.

5.3.1 Definition of the clusters

To find the sets of comparable subjects, we group the subjects by clusters, indexed by
four variables:

• Geographical location l: Students living in the same neighbourhood are grouped
together.

• Time of departure t: It is not accurate to compare a student departing from home
at 6 am with one starting at 8 am. For this reason, subjects travelling on the same
day and within the same time frame are grouped together, using a window size of
20 minutes.

• Destination s: Students going to the same school are grouped together. In the
case that two or more schools share the same location (e.g. a Primary and a Sec-
ondary school), students attending either one of them are added to the same clus-
ter.

• Mode of transportation m: The analysis is carried out over two modes of trans-
portation, either private transportation (car, taxi) or public transportation (bus,
train).

Two spatial clustering methods are implemented to group by origin and decide on
the index l. In the first version, we find the smallest bounding box that contains all
the home locations of the students. We divide this bounding box in cells of equal edge
size r, e.g. r = 400 metres, and assign to the same geographical clusters students with
home locations inside of the same cell. This is a grid-based method that partitions the
space into a finite number of cells from a grid structure. Its main advantage is its fast
processing time.

The second version of the spatial clustering approach is based on a distance rule
where all home locations of the students in the same cluster should be within r metres
of each other. This is a hierarchical clustering method using decision trees based in the
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FIGURE 5.2: Home locations (red dots), school locations (blue triangles) and spatial clustering
methods. Grid and circle clustering. (Figure produced by F. Benita, with data from the author)

geodesic distance matrix of all trips. This technique, although computationally more
expensive, ensures that the distance rule holds for all the trips.

Figure 5.2 shows the visual comparison of the two different spatial clustering meth-
ods for r = 400 metres. The red dots mark the home locations of the subjects. The
blue triangles mark the school locations of the 89 schools.2 The grid-based method (top
left) is a simple but efficient strategy, grouping the points that fall in specific cells of
the mesh. On the other hand, the distance rule approach (top right) can be visualised
by circles of diameter equal to 400 metres. Inside each circle, the maximum distance
between any two home locations is 400 metres. The algorithm optimises a criterion
function and the centroid of each spatial cluster can be easily identified, making it a
powerful method to build the clusters. Recall that Figure 5.2 is presented only for vi-
sualisation purposes since inside each spatial cluster (cells/circles), students might be
mixed among different transportation modes and different destination schools.

2It is interesting to note that some students have home location in Malaysia, and commute from
Malaysia to Singapore daily for study.
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5.3.2 Definition of the empirical imitation-regret

We obtain a set of clusters {Cl,t,s,m}l,t,s,m where each Cl,t,s,m contains the trip durations
til,t,s,m of students in the cluster. If several students belong to the same cluster, we find
the student whose trip has the minimum duration among all trips in the cluster. We
call this trip the baseline tbl,t,s,m, against which the remaining trips will be compared.

We next define the imitation-regret for student i in cluster Cl,t,s,m by

Ril,t,s,m = til,t,s,m − tbl,t,s,m

The imitation-regret for the baseline student is zero, and nonnegative for everyone else.
We are interested in seeing how large the deviations from the baseline can be, as a
necessary condition for the system to be at equilibrium is that these deviations must be
close to zero. Sensitivity analysis is performed to account for the parameters used in
the clustering method.

In this analysis, only students using one mode of transportation (public or private)
are considered. Multimodal trips present the additional difficulty of comparing stu-
dents that may have a different mix of transportation modes, with a low number of
clusters with at least two comparable students. They are however discussed in the
following findings.

Our notion of empirical imitation-regret shares its name with the traditional regret
measure, commonly found in the learning and multi-agent systems literature. The
subjects are faced with multiple strategies that they can choose from: all the routes that
go from their neighbourhood to the destination. They may not know about current
traffic conditions or which route will take the least amount of time but nevertheless
have to make a decision. A posteriori, this decision can be compared with the best
action they could have implemented on that day, and the difference is the imitation-
regret. The appearance of the word “imitation” is due to the fact that we compare the
decision solely with other players’ choices of routes. A better route that is not used by
any of the students in the cluster will therefore not be considered here. This restriction
is shared with many natural learning dynamics (e.g., follow-the-leader dynamics) and
thus can be interpreted as a reasonable assumption on subjects’ decisions.

The measure of empirical imitation-regret depends naturally on the geographical
area covered by the neighbourhood. As the area increases, so does the accumulated
imitation-regret, since the minimum is taken over a larger set of students. However,
geographical clusters lose in precision as their size gets larger, since two different sub-
jects in the same cluster may have widely diverging trip durations. The results in this
section use a geographical cluster size of about 400 metres, found to balance the two
issues well. Additionally, we perform sensitivity analysis to show the robustness of our
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findings, presented at the end of this Section.
The value of 400 metres is picked for the following reasons. First, assuming a uni-

formly random distribution in the cell their expected distance would be a little over 200
metres. In practice this distribution is concentrated on blocks of flats and two students
could easily be living in the same block. Let’s assume that the students are at distance
of 200 metres. There are two cases, either both the students drive/are driven or they
take bus/metro. If they drive, this distance is noise. If they use metro/bus then since
they go to the same school, they typically would use the same bus/metro and board
it at the same regular time. The only differentiating factors are the difference in the
distance they cover on foot (in a geometric world via triangle inequality less than 200
metres) and the difference between the amounts of buffer time (arrive a little earlier) at
the stop. The rest of the route is identical.

How is the notion of empirical imitation-regret relevant to understand the decision-
making of subjects and system properties? On the one hand, low empirical imitation-
regret is a necessary condition for equilibrium. Indeed, at equilibrium, all comparable
subjects should perform their trip in roughly the same amount of time. If an individ-
ual’s imitation-regret is large enough, say, 10 minutes, she may be better off switching
to a different route, e.g., the one used by the fastest individual in the cluster.

On the other hand, a high empirical imitation-regret warns us that some users are
unable to find the fastest route to reach their destination. We see two possible direc-
tions to explore following such a conclusion. If we assume that individuals are solely
interested in minimising their trip duration—a fair assumption for the morning trip,
constrained by the hard deadline of the class start, also supported by the significantly
longer trip durations in the evening commute—, then the network may benefit from the
injection of information on how to traverse it. Otherwise, a high empirical imitation-
regret reveals that other factors enter into consideration when the student is selecting
the route, such as finding the least expensive one, the cooler one (in terms of temper-
ature) or one that is shared with other students. The additional data collected by the
sensor (e.g. temperature, proximity to other sensors) could indeed be articulated to
uncover the nature of these factors.

5.3.3 Estimates of the empirical imitation-regret

In Figure 5.3, left, we plot the complementary cumulative distribution of the empirical
imitation-regret. A point on the curve indicates the fraction of individuals (read on the
y-axis) who have an empirical imitation-regret greater or equal than x (read on the x-
axis). We also give the mean (solid red line) and median (dashed red line) experienced
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FIGURE 5.3: Left: Complementary cumulative distribution function of the imitation-regret. We
aggregate all days of the experiment in a single figure and remove students with zero imitation-
regret (in other words, the baseline students). The mean imitation-regret signalled by the red
line is equal to 7 minutes, while the median imitation-regret plotted with the dashed blue line
is equal to 5 minutes and 15 seconds. Right: Comparison of complementary CDF of imitation-
regret per mode of transportation.

empirical imitation-regret. It should be noted that the empirical imitation-regret distri-
bution and its moments do not include the students for which the imitation-regret is
zero, i.e., the best in the cluster.

In the dataset of subject who appear in clusters with multiple trips, the average
length of a trip is 25 minutes and 12 seconds. This locates the average regret of the trips
at about 28% of the trip duration. This result motivates the introduction of a solution
parametrised by two values, ε and δ. The reported measurements constitute an (ε, δ)-
equilibrium if we find that a fraction 1 − δ of users experience at most a quantity ε of
imitation-regret. The experiment yields values ε = 15 minutes and 20 seconds, and
δ = 0.1.

Second, one can investigate the imitation-regret by mode of transportation. In Fig-
ure 5.3, right, we plot the same complementary cumulative distribution function for
both subjects who use only private transportation and subjects who use only public
transportation. While the regret for private transportation is lesser than that of public
transportation, the regret as a percentage of the trip duration inverts this relation. In-
deed, the average duration of a trip made with a private vehicle is 13 minutes and 50
seconds, while the same average for public transportation is 31 minutes and 40 seconds.
However, for private vehicle trips, the average is at 5 minutes, while it is 6 minutes and
40 seconds for trips taken in public transport. This locates the regret at respectively
37% and 21% of the trip duration. The greater variability of road conditions during car
trips may explain why the regret as a fraction of the trip duration is greater.
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FIGURE 5.4: Left: We use as baseline the curve in orange representing the results for the grid
clustering with cell size 400 metres. The blue area behind the line represents the variations
when using ball clusters instead, of sizes 200, 400, 600, 800, 1,000 metres. Right: The baseline
(in orange) is now the curve for the ball clustering with 400 metres diameter, with the blue area
showing variations with the grid clustering.

For students using a mix of both modes of transportation, one can expect the com-
plementary CDF to locate between the two curves, and thus the regret to be bounded
by that of private transportation trips and public transportation trips. It is not repre-
sented on the Figure 5.3, right.

Third, we study the imitation-regret between modes, i.e., taking the regret with re-
spect to the fastest individual in the cluster, irrelevant of transportation mode. We focus
our analysis on mixed clusters, where at least one individual using public transporta-
tion only and one individual using private transportation only appear. This analysis is
carried over all clustering procedures, i.e., both ball and grid clustering with the five
different sizes.

From the smallest cluster cells to the largest ones, we have between 439 and 1,953
such mixed clusters.3 However, for all cluster sizes, the fraction of trips completed
faster in public transportation than in a private vehicle is located around 5%.

We show in Figure 5.4 that our measure of imitation-regret is stable with respect
to the clustering procedure. Although different cluster sizes as well as the two cluster
methodologies (ball or grid) differ, the qualitative results hold for all procedures, while
descriptive statistics are tightly bounded.

3As the size of the cluster cell decreases, it is indeed less likely to contain both subjects using public
transportation and subjects using private transportation.
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5.4 The Stress of Catastrophe

To measure the impact of congestion on the efficiency of the network, we compare the
travel times in our dataset with estimated travel times in optimistic conditions. The
ratio between the two is defined as the stress of catastrophe (Section 5.4.1). We present
our methodology to estimate the free-flow travel times, using a graph representation
of Singapore’s road network for private transportation trips and queries to an online
service for public transportation (Section 5.4.2). Finally, the estimations of the stress of
catastrophe are given for all modes and discussed (Section 5.4.3).

5.4.1 Definition of the stress of catastrophe

The stress of catastrophe (SoC) is introduced to give a measure of the weight of ex-
ternalities in the system. As more agents join the road network, congestion increases
on the links. Classically, the PoA has been employed to quantify how bad the selfish
decision-making of these agents affects the efficiency of the system, compared to the so-
cial optimum implemented by a central planner. However, PoA does not fully capture
the effects of a tragedy of the commons that congestion presents. In such a scenario, it
is not costly for one additional individual to enter the system, but since all agents do
so, the global welfare is very much diminished. Similarly, congestion can reach levels
after which the action of a central planner has little effect, yielding a low PoA that does
not reflect just how congested the system is (Colini-Baldeschi et al., 2017).

On top of this, estimating the equilibria and optima of a routing system are data-
intensive tasks. First, demands need to be known or estimated from samples for every
origin-destination pair of the agents. Second, latency functions for every edge of the
network need to be estimated. Third, the global optimum and equilibrium flow need
to be computed, so as to compare their respective cost and estimate the PoA. Recent
works have followed this approach, finding that PoA is low, or even equal to 1 (no
inefficiency) (Zhang et al., 2018; Wu, Möhring, and Xu, 2018).

The method we offer in comparison does not require to extrapolate from a sample or
record the behaviour of the whole system, and instead provides an estimate of an upper
bound of PoA via empirical data. We are only concerned with obtaining a dataset for
which our samples experience congestion as any individual in the general population
would, a point we discussed in Section 5.1.6 with respect to our dataset.

The SoC eschews these pitfalls by providing an optimistic lower bound to the so-
cially optimal trip durations. It stems from the simple fact that a crude lower bound to
the optimal trip duration is one in which no one else is present on the road. With the
road street network of the city at our disposition and a shortest path algorithm, free-
flow trip durations are obtained. They give us a “blue sky”—i.e., ideal scenario—lower
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bound. Comparing the actual recorded trip duration length to this lower bound in turn
yields a ratio of how much faster the trip could have been in a no-externality scenario.
Formally, we define the SoC from our data as such:

SoC =
Cost(Recorded trip duration)

Cost(Free-flow trip durations)
.

Since the denominator is a lower bound to the socially optimal cost, we also have
the following corollary:

PoA =
Cost(Recorded trip durations)

Cost(Optimal trip durations)
≤ SoC.

5.4.2 Estimation of the free-flow trip duration

From a road map of Singapore is computed a graph representation, where each vertex
is located at an intersection or a bend in the road. An edge connecting two vertices
indicates the presence of a segment of road going from one vertex to the other. Edges
also possess additional metadata: their physical length (in meters) as well as the road
type—such as expressway, local street, arterial road, etc.

Given this information, we create five scenarios, corresponding to five different
speed profiles on each edge type, from a very fast profile to a very slow one, defined
from existing speed limits in Singapore.4 The time to traverse one edge is computed as
the length of the segment divided by the speed on the segment. Finally, for each private
transportation trip for all students in the dataset, we associate its origin and destination
with the closest vertex in the graph before running a shortest path algorithm to estimate
the free-flow travel time of the trip.

For public transportation trips, we query an online oracle, the Google Maps API.
The API is not time-dependent, i.e., will not return results that depend on the conges-
tion. To obtain a best case trip duration, we remove potential waiting time at train or
bus stations. To minimise the number of requests to the API, we employ the grid clus-
tering method described in the previous section and query for the best route between a
non-empty cluster’s centroid and a school. Some of the requests do not return satisfac-
tory results, either due to a “Not Found” error or when the algorithm repositions the
starting point of the trip too far from the student’s home. These unsuccessful requests
are dropped in the analysis.

4Exact speed profiles are given in Appendix B.2.
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TABLE 5.2: Estimated free-flow mean trip duration and stress of catastrophe.

Scenario Mean trip duration (min) Stress of catastrophe

Very fast 8’05 1.83
Fast 9’06 1.63
Medium 10’22 1.43
Slow 12’12 1.22
Very slow 15’15 0.97

Public transport 32’03 1.05
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FIGURE 5.5: Private stress of catastrophe, density distribution.

5.4.3 Estimation of the stress of catastrophe

For each trip, as described above, we obtain five estimates of free-flow duration, one
per scenario. Overall, all scenarios effectively give a lower bound to the recorded pri-
vate vehicle trip durations, with the exception of the “Very slow” speed profile for
which the SoC is below 1. To obtain the SoC under one particular scenario, we sum up
all recorded durations from the dataset and divide by the sum of free-flow estimates.
The obtained measures are recorded in Table 5.2.

Figure 5.5 displays the densities of free-flow estimates of trip duration. Under the
optimistic scenario, where all speeds are taken to approach the enforced speed limit on
real Singapore roads, the stress of catastrophe equals 1.83 whereas the most pessimistic
profile yields a stress of catastrophe of 0.97.

The five scenarios offer more or less stringent lower bounds on the real travel time
of experiment subjects. The result strikingly reveals that even under the most opti-
mistic scenario, the SoC is still well under the theoretically-derived PoA for real road
networks. For nonatomic congestion games with quartic cost functions—classically
employed to model real road networks—the PoA is 2.151. Thus, the experiment data
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reveals that the worst case estimate given by the price of anarchy may be largely pes-
simistic.

For subjects travelling on the public system of Singapore, the estimate of the SoC is
1.05, indicating a much lower impact of congestion on the travel time. In a city where
65% of the population daily travels in public transportation, the low level of SoC for
this mode has important policy implications.

To put it all together, games featuring links with a congestion element (e.g., the
monomial α · x4 for quartic cost functions) represent a private transportation network.
Adding constant cost links is akin to adding public transportation options to the game.
Whether we estimate the SoC for cars only, or mixing public and private transportation,
we obtain an upper bound of PoA below that given to us by the worst-case example—
and more so when both modes are mixed. The next section will provide arguments to
explore why this may be the case in real transportation networks.

5.5 Why is PoA small in real transportation networks?

In this section, we add a strong assumption on the strategy sets of commuters. We
find that this assumption yields lower PoA bounds, perhaps explaining the empirical
results of Section 5.4. We also provide experimental justification for the assumption.

We note that such an assumption was developed independently in Bilò and Vinci
(2018). While their work computes precise values of the PoA for linear congestion
games, we provide more general bounds for parallel links networks using a different
strategy. Future work may provide a more complete picture of PoA behaviour with
this assumption.

5.5.1 Definitions and model

We use the framework introduced in Section 2.6 to define a routing game Γ. In this sec-
tion, cost functions are specified as Bureau of Public Roads-type, i.e. affine monomials
(Public Roads, 1964), expressed as

ce(fe) = FF + FF · α
( fe
CAP

)β
where α and β are conventionally taken to be 0.15 and 4, respectively, while CAP is the
capacity of the edge and FF is the free-flow time, or the time to traverse the edge when
congestion is nil.

The path cost of path P under flow f is hence given by

cP (f) = tP +
∑
e

αef
d
e , where fe =

∑
P3e

fP
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We introduce the concept of δ-free-flow routing games in the next definition.

Definition 5.5.1. A routing game is a δ-free-flow routing game if for all P ∈ P , we have
tP ≤ (1 + δ)tM , where tM = minP tP .

In a δ-free-flow routing game, the paths available to agents have free-flow time
contained within a fraction δ of each other. We provide two preliminary justifications
for this model, with empirical evidence in the following Section 5.5.4.

What is the value of δ in the Pigou network of Figure 1.2? Since the variable cost
link has latency c(x) = x and the constant cost link c(x) = 1, δ ought to be set to ∞.
However, in real road networks, it is physically impossible to “jump” from a vertex to
the next, so δ must be strictly bounded. Could this be the reason why Pigou, a worst-
case network for many PoA bounds, behaves so differently than real transportation
networks, where the PoA is lower (Section 5.4)?

Second, we must ask why δ, if bounded, is low in general. Faced with the exponen-
tially large number of paths connecting its origin to its destination, it is possible that
agents use a simple heuristic to prune the space of strategies down to a few possible
options. It does not appear realistic for an agent to consider all possible paths connect-
ing its origin to its destination.5 Letting the agent decide between paths for which the
free-flow time (or intuitively, the directness) is low seems a priori reasonable.

Note too that the concept of δ-free-flow routing must be taken over the available
paths of the agents. In Section 2.6, we had defined the path cost as the sum of edge
costs cP (f) =

∑
e ce(f). Here, we have explicitly separated the free-flow duration of

the path from the cost incurred over each edge, as cP (f) = tP +
∑

e αef
d
e .

5.5.2 δ-free-flow routing for δ = 0

We start the discussion with the case of δ = 0. This is equivalent to setting all free-flow
costs of the available paths to the same value tM , and thus is strategically similar to
routing games with monomial latency functions without an affine constant. For δ = 0,
price of anarchy is 1, a fact noted in Roughgarden and Tardos, 2002 for linear cost
functions, without the fixed free-flow time latencies in our case. We provide a proof
using a non-linear programming approach to the optimal flow f∗.

Proposition 5.5.1. For parallel links networks, if δ = 0, PoA(δ) = PoA(0) = 1.
5To take a contrived example, one would not drive through Kuala Lumpur to reach the East of Singa-

pore from the West.



75

Proof.

C(f) =
∑
e

fe(tM + αef
p
e )

= µtM +
∑
e

αef
p+1
e

At equilibrium, αef
p
e = K for all e for some K > 0.

The optimum flow f∗ is attained by solving:

min
∑
e

αef
p+1
e (OPT-PL)

s.t.
∑
e

fe = µ

We can set up the Lagrangian L(λ) =
∑

e αef
p+1
e + λ(µ−

∑
e fe). We get

∂L

∂fe
= 0⇔ λ

p+ 1
= αef

p
e , ∀e

which implies that all edge latencies are equal at optimum and thus f∗ has the same
cost as the equilibrium.

A modification of the proof yields the result for general networks, with several
commodities k = 1, . . . ,K, demands (µk),

∑K
k=1 µk = µ, paths Pk ∈ Pk and free-flow

time for commodity k, tk.

Proposition 5.5.2. For general networks with several commodities, if δ = 0, PoA(δ) =

PoA(0) = 1.

Proof.

C(f) =

K∑
k=1

∑
P∈Pk

fP (tk +
∑
e∈P

αef
p
e )

=

K∑
k=1

µktk +

K∑
k=1

∑
P∈Pk

fP
∑
e∈P

αef
p
e

=
K∑
k=1

µktk +
∑
e

αef
d+1
e

At equilibrium,
∑

e∈P αef
p
e = X for all P for some X > 0.
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The optimum flow f∗ is attained by solving:

min
∑
e

αef
p+1
e (OPT-GN)

s.t. ∀k,
∑
P∈Pk

fP = µk

∀e,
∑
P3e

fp = fe

We can set up the Lagrangian

L((λe)e, (γk)k) =
∑
e

αef
p+1
e +

∑
k

γk(µk −
∑
P∈Pk

fP ) +
∑
e

λe(fe −
∑
P3e

fP ) .

We get
∂L

∂fe
= 0⇔ −λe = αe(p+ 1)fpe , ∀e

and for P ∈ Pk

∂L

∂fP
= −

∑
e∈P

λe − γk = 0⇔ γk = −
∑
e∈P

λe

⇔ γk
p+ 1

=
∑
e∈P

αef
p
e

which implies that all path latencies are equal at optimum and thus f∗ is an equilib-
rium. Since all equilibria have same cost in symmetric nonatomic games, PoA(0) =

1.

5.5.3 δ-free-flow PoA for general networks

We have now a game Γ played on a network, with social cost function C. We let again
CT represent the social cost of the game ΓT played on the same network with free-flow
path costs all set to t′, with t′ ≤ (1 + δ)tP for any path P .

Proposition 5.5.3. Let f∗ be the optimal flow for Γ, and f∗T the optimal flow for ΓT . C(f∗) ≥
CT (f∗T )

1+δ .

Proof. Let f be a feasible flow.

CT (f) =
∑
P

fP (t′ +
∑
e∈P

αef
d
e )

≤
∑
P

fP ((1 + δ)tP + (1 + δ)
∑
e∈P

αef
d
e )

= (1 + δ)
∑
P

fP (tP +
∑
e∈P

αef
d
e )
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= (1 + δ)C(f)

Thus C(f∗) ≥ CT (f∗)
(1+δ) ≥

CT (f∗T )
1+δ .

For parallel links network, we can prove that if f̄T is an equilibrium flow of ΓT , then
C(f̄) ≤ CT (f̄T ).

Lemma 5.5.4. C(f̄) ≤ CT (f̄T )

Proof. Suppose C(f̄) > CT (f̄T ). Let W be the equilibrium latency on a link of the
original game Γ and WT that of ΓT . C(f̄) > CT (f̄T ) is equivalent to W > WT .

Note first that at equilibrium all links f̄T are used and so f̄T,e > 0 for all e.
Two cases can take place:

1. ∃e∗ such that f̄e∗ = 0. This implies that te∗ ≤ WT , so W is not the latency of an
equilibrium, contradiction.

2. f̄e > 0 for all e > 0. We then have

te + αef̄
d
e > (1 + δ)tM + αef̄

d
T,e, ∀e

⇒αef̄
d
e − αef̄dT,e > (1 + δ)tM − te ≥ 0, ∀e

⇒αef̄
d
e > αef̄

d
T,e, ∀e

⇒ f̄e > f̄T,e, ∀e

where the second implication comes from the definition of (1 + δ)tM , weakly
greater than all other free-flow times. This is a contradiction since both flows
sum up to the demand.

We also have CT (f∗T ) = CT (f̄T ) and thus the following bound holds.

PoA(δ) =
C(f̄)

C(f∗)
≤ (1 + δ)

CT (f̄T )

CT (f∗T )
= 1 + δ

5.5.4 Empirical justification of δ-free-flow routing

The graph introduced in Section 5.4 to estimate free-flow travel time is employed here.
We look for two measurements:

• One, we estimate the best free-flow time for a morning trip in the dataset, as we
have done in Section 5.4.

• Two, we also estimate the data free-flow time of the route selected by the subject for
its morning trip, presented in the next paragraph.
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Comparing the two values allows us to estimate the δ for our population.

Trip reconstruction

A private transportation trip segment measured by the sensor consists of a stream of
geographical locations. For each datapoint, we associate the closest edge in the graph.
The size of the graph (61151 vertices and 65596 edges) implies a lengthy lookup phase
to associate the point to its closest edge. For this reason, we consider a smaller dataset
of 449 car segments out of the 17,897 segments in the larger dataset. These selected
segments are well distributed across Singapore.

The direction in which the subject traversed the edge is assigned by a heuristic
based on the distance of each endpoint to the endpoints of edges preceding and follow-
ing the edge under consideration. In other words, the heuristic attempts to minimize
the amount of back and forth, selecting the direction that least creates deviations.

Information on the origin and destination of the trip as well as the list of directed
edges traversed by the subject does not suffice. Where the sensor does not record a
datapoint,6 we must provide a best guess on which edges were crossed during the trip.

• For gaps of small length between two directed edges e1 and e2 (in that order),
we compute the average speed between the two edges and drive a straight line
between the target of e1 and the source of e2. The duration to cross this gap is
obtained as the geographical distance divided by the average speed.

• For gaps of larger length, we run a shortest path algorithm between the target of
e1 and the source of e2.

The data free-flow time is finally obtained as the sum of durations of redirected edges,
small gaps and large gaps.

The final free-flow duration of the selected route is obtained as the sum of durations
to traverse the redirected edges, small gaps and large gaps.

Estimation of δ

For each trip segment, two estimates are obtained: the best free-flow time and the data
free-flow time. We call deviation the ratio between these two estimates. The deviation is
strongly related to the parameter δ we introduce in Section 5.5.1. It measures the free-
flow time difference between the best route the subject could have chosen and the route
actually selected, both in a situation of no congestion. The distribution of the deviation
among subjects provides a clue to estimating δ for the routing game of Singapore. A

6Geographical location is obtained by scanning surrounding WiFi access points. The method does not
always yield accurate enough measurements, but the issue can be mitigated with proper data processing
(Monnot et al., 2016).
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FIGURE 5.6: For each trip segment, we find the best free-flow time and the data free-flow time.
The reconstruction of the selected route uses datapoints logged along the trip. In yellow, the
fastest route in free-flow condition is highlighted. The reconstructed route is in green, along
which we find the data free-flow time. (Figure produced by F. Benita, with data from the author.)

Quartile 0% 25% 50% 75% 100%

Deviation -0.68 0.17 0.45 0.88 3.53

TABLE 5.3: Quartiles of deviation.

small δ yields support to the hypothesis that agents only consider routes which connect
origin and destination in a straightforward manner (under no congestion) as part of
their strategy set (Figure 5.7 and Table 5.3).

5.6 Discussion

The price of anarchy of real routing systems is a question that has long eluded experi-
mental researchers. To our knowledge, this experiment was among the first to investi-
gate from such granular data the efficiency of a mixed transportation system. Another
effort, led by Zhang et al. (2018), has employed a different data source, namely the
rate of passage of cars on a reduced section of the Boston transportation network. By
estimating the demands and cost functions on the road, the authors were able to esti-
mate an optimal assignment and compare it with the recorded flows. A large dataset
obtained from cell phone location data was employed by Çolak, Lima, and González
(2016) to measure the impact of selfish routing on congestion, in five different cities.
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FIGURE 5.7: The deviation is measured by the ratio of the selected route free-flow time to the
minimum free-flow time among all routes between the origin and the destination. Close to 80%
of values are below 1, implying that the free-flow time of the selected route is rarely twice as
long as the best free-flow time.

Demands were estimated from the data while road information was obtained from
OpenStreetMaps, with optimal assignments given by an online provider.

All studies, including ours, rely on so-called “Big Data” methods. This is not a
coincidence: The biggest obstacle to investigating the efficiency of routing system is
the collection of data, of which large amounts are needed for accurate estimations. On
the one hand, it is possible to have a relatively coarse understanding of the system’s
performance, from Household Interview Travel Surveys (HITS), but these surveys do
not reliably contain granular routing decisions. Although they represent a sample of
the population, they remain useful to derive origin and destination demand matrices.

It is however clear that with the propagation of low cost sensors and data policies
for smart cities (e.g., requiring detailed travel data from taxis and/or ride-sharing op-
erators), access to this type of information will be facilitated. We expect further studies
to not only experimentally assess the current efficiency of commuting systems but to
predict the behaviour of the system under stress or variations in its design. Areas of
game theory such as behavioural studies can be profitably invoked to understand how
traffic changes in response to the introduction of tolls or other pricing mechanisms.
In this drive for efficiency, it is important to consider which side effects may arise, a
question we pose with respect to inequality in the next Chapter 6.
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Chapter 6

How does the drive for efficiency
affect wealth inequality?

Our estimates of the stress of catastrophe in Chapter 5 showed a clear difference be-
tween subjects in private transportation, for whom the SoC was larger than 1, and
subjects in public transportation, with an SoC (and by extension, a PoA) much closer
to 1. The latter thus reduce the average inefficiency due to selfish routing, but incur the
cost of higher latencies due to a lower transportation speed.

Is this a general phenomenon? Price mechanisms for transportation, be they “em-
bodied” in the cost of buying a private vehicle, calling a car from a ride-sharing opera-
tor or a traditional taxi company, or explicitly levied with tolls, have long been hailed
as an effective way to deal with congestion. Resources are rare and one private mode
of transportation imposes more externalities than any other, in the form of increased
pollution, noise or land use waste, and thus adequately pricing these externalities is
critical.

But inefficiency, as PoA reveals, also appears distinctly as a result of self-interested
routing decisions. Even assuming all previous externalities are inexistent, selfish rout-
ing introduces more inefficiency from routing decisions alone, which in general are
bounded away from a socially optimal state (Figure 1.2b). There again, pricing with
tolls can induce efficient equilibria.

In its most basic formulation—marginal cost pricing where agents trade time with
money exactly one-to-one—the celebrated Pigouvian tax internalises the externalities
of selfish routing and updates the cost functions such that an equilibrium flow in this
new game is also an optimal flow of the original game. If the “one-to-one” assumption
on elasticity is too strong,1 one can introduce agent types who trade time with money
according to different rates, and obtain similar results.

As we move closer to representing the true value a user has for outcomes of a game,
the question of distributional justice becomes inevitable. That a user would trade, e.g.,
time against money says little if we do not consider as input to the game some initial

1In the Pigou model, cost is obtained by a simple latency + price addition, see Figure 1.2d.
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distribution of wealth. And once we do, it is natural to ask how this distribution is
affected by the mechanism we choose to design.2

The question of inequality is all the more timely as a surprisingly wide range of top-
ical issues finds its roots in the increasing polarisation of income and wealth, from cli-
mate change (Boyce, 1994; Torras and Boyce, 1998; Cardenas, 2007; Baek and Gweisah,
2013) to the degradation of democracies (Stiglitz, 2012; Acemoglu et al., 2015; Girid-
haradas, 2018). Inefficiency from selfish routing, as we have seen, can be mitigated with
tolls, yielding a lower overall congestion. But how to do so while maintaining equity—
a desiderata expressed in the Paris agreement of 2015 (UNFCCC, 2015)—remains a
contentious debate.

The effects of congestion pricing, for this reason, have been analysed from the two
viewpoints exposed above: efficiency and equity. On the one hand, its positive effects
on overall congestion were noted both theoretically (Pigou, 1920; Fleischer, Jain, and
Mahdian, 2004) and experimentally (Olszewski and Xie, 2005). On the other hand, the
efficiency-driven models of routing games have not addressed the question of equity,
discussed more thoroughly in empirical surveys of transportation policies (see Levin-
son (2010) for a review). This gap is all the more troubling as, we argue in this chapter,
it is not an insurmountable one—as long as we correctly model it. Once inequality can
be reasoned about in the framework of algorithmic game theory, its tension (or conver-
gence) with efficiency is better understood and opens up broader avenues of research.

The model we propose explicitly integrates distributional effects into its formula-
tion. When agents, with varying wealth and values of time to money, participate in the
game, their choices are informed by their resources. As such, the model is well-suited
to represent the effects of any form of pricing, in particular tolls, on the distribution of
wealth. Once general results are established for broad classes of games, we propose
extensions and examples of applications to designers who integrate equity as part of
their objective function.

Contents of this chapter

The legwork presenting routing games formalism was done previously in Section 2.6.
Our discussion of inequality in routing games will reuse key concepts while introduc-
ing wealth-endowed agents into the model in Section 6.1.3 We also provide additional

2Note that even if we do not care about each user’s elasticity for time, the question of inequality lies
just below the surface. The equilibrium flow in the original Pigou example is perfectly fair: all users incur
the same latency. But what can be said about the optimal flow, where one half of the users must make an
individually suboptimal choice, a half usually left unspecified? The question may be settled by appealing
to a lottery, where each user has a 50% chance to be assigned to the slow link, or a repeated game where
on even days, the first half gets to travel on the fast link while on odd days, the second half goes.

3There are important differences between inequality of wealth and inequality of income, which we do
not tackle in this chapter. The word “wealth” is taken in the sense usually given in microeconomic models
of “some initial endowment”.
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definitions related to the measurement of inequality.
Section 6.2 establishes a broad result on inequality in symmetric routing games,

showing that any assignment of tolls must increase inequality in the population. Eco-
nomic equality can be measured in myriad different ways, but we show that any index
satisfying four well-known axioms will yield the same result.

For the asymmetric case, treated in Section 6.3, we cannot obtain such a clear-cut
result. We show via a decomposable inequality index, the Theil L index (Theil, 1967),
and a counterexample that inequality can go in either direction. The symmetric case
helps us argue why this may be the case.

Computationally, one may care not only about the sign of the deviation, but also
about its magnitude. We introduce the inequity index in Section 6.4, a measure of
the marginal impact of a game on inequality. The inequity index in our model has
natural properties such as scale invariance or robustness to no-regret learning agents.
Following this, a Pigou network with wealth is presented in Section 6.5, exemplifying
the inequality increase in symmetric games and the tension with PoA.

We explore in Section 6.6 how a designer could modify the game to recycle rev-
enues raised from the tolls, or effect a tradeoff between efficiency and inequality. This
thread, explored in transportation policy literature and favoured by policy makers, can
naturally be pursued in our model.

Finally, in Section 6.7, we come back to the NSE data and uncover experimental
validation of our model. A methodology is proposed to estimate the inequity index, in
spite of limitations due to the absence of precise wealth data.

6.1 Congestion games with wealth

Section 2.6 presented routing games with homogeneous agents who care solely about
their latency. By modifying the edge cost functions to include an edge price discounted
by wealth, we integrate monetary costs into the game. This translates to the ex post
wealth distribution, where the cost of the game is subtracted from the initial wealth of
each agent.

Wealth We have a continuum of types which lie in [0, 1]. Type x has wealth q(x), where
q is the quantile function of the wealth of a population of agents — that is, |z : q(z) ≤
q(x)| = x, where | · | is the Lebesgue measure. We shall further assume that q(0) > 0

and q is measurable and nondecreasing. Typically, we will assume a continuum of
types and a strictly increasing, continuous q. In this case, if we treat wealth as random
variable, then q expresses the inverse of its cumulative distribution function.
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Flow A flow F : [0, 1] 7→ P is a mapping from types to paths. We shall only need to
consider canonical flows, that is, flows F which divide [0, 1] into finitely many intervals,
and map the interiors of those intervals to one path in P ; that is, F is specified by a
finite number of reals a1 = 0 ≤ a2 ≤ · · · ≤ aN+1 = 1 such that F (b) = F (c) for all i and
b, c ∈ (ai, ai+1). Section 6.2 expands on this issue.

Let F be a flow. The congestion of this flow, cF , is a function mapping E to the
nonnegative reals, where cF (e) = |{x : e ∈ F (x)}|, where | · | denotes the Lebesgue
measure.

Agent cost The value of travel time (VTT) relates the price of the chosen path to the
latency incurred by the player. Thus, the monetary cost of a player x on path F (x) is
defined to be

costF (x) =
∑

e∈F (x)

`e(c
F (e)) · VTT + τe .

There is an extensive discussion in the transportation literature of the true cost of
transportation to the traveler and the value of time, see (Abrantes and Wardman, 2011;
Börjesson, Fosgerau, and Algers, 2012) for some of the most recent papers. This field
has established and studied the income elasticity of the value of (travel) time (informally,
the precise nature of the term VTT above) and validated and measured it through exten-
sive surveys and other studies over three decades. The upshot is that the cross-sectional
elasticity (that is, the elasticity with regressive corrections across causal parameters
such as having children and living in the capital) is constant across long periods of
time, and that the precise relationship seems to be VTT = qβ where β ≤ 1 is conven-
tionally taken to be one, even though certain countries, such as the UK, use value 0.8.
The model follows β = 1, meaning that if player x traverses an edge with price m and
delay d, the perceived cost is, in monetary terms, d · q(x) +m.

Put together, the cost of player x under flow F is

costF (x) =
∑

e∈F (x)

`e(c
F (e)) · q(x) + τe (CAN)

We call this agent cost function canonical and show further that it is a natural choice
with good properties (Section 6.4).

Nash equilibrium We say that a flow F is a Nash equilibrium if for all types x and for
all paths P ∈ P

costF (x) ≤ costF,P (x) =
∑
e∈P

`e(c
F (e)) · q(x) + τe (NE)
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L(x)

Quantile x

A B

FIGURE 6.1: The Lorenz curve is plotted in blue. The green area is B =
∫ 1

0
L(t)dt. The Gini

coefficient is then G = 1− 2B = 2A.

that is, if no type x would be better off by deviating to another path P ∈ P . We let
costF,P (x) denote the cost for agent x in flow F if it was using path P instead of F (x).

Gini coefficient The Gini coefficient (Gini, 1921) is a central measure of inequality.

Definition 6.1.1. The Gini coefficient of wealth distribution q is given by

G(q) = 1− 2

∫ 1

0
L(t)dt

where L(t) is the Lorenz curve, or the fraction of total wealth held by individuals under
and at quantile x.

L(t) =
1

µ

∫ t

0
q(x)dx =

1

µ
Q(t) (LC)

for Q(t) =
∫ t

0 q(x)dx, the cumulative wealth up to quantile t. We show in Figure 6.1 the
relationship between the Lorenz curve and the Gini coefficient.

A Gini coefficient equal to zero corresponds to perfect equality (everyone has the
same wealth), whereas a Gini coefficient of one corresponds to maximal inequality (the
emperor owns all the wealth). The Gini coefficient satisfies four axioms that we will
encounter again to justify a more general result in Section 6.2.

Scale invariance The Gini coefficient does not change after rescaling wealth (e.g.,
change of units/currency). For a distribution q and λ > 0, G(q) = G(λq).

Population invariance The Gini coefficient does not depend on the size of the
population in the following sense. Supposing all agents of distribution q are cloned
and inserted back into the original population to obtain q′, we have G(q) = G(q′).
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Anonymity The Gini coefficient does not use any other attribute of the population
apart from its wealth distribution. For instance, it cannot weigh an agent more due to
its ranking in the population.

Transfer principle If wealth (less than the difference4), is transferred from an
agent with higher wealth to an agent with lower wealth, the resulting distribution is
more equal (i.e., the Gini decreases).

Our motivating problem We consider how Nash equilibrium flowF affects the wealth
of the population. In particular, we assume that the wealth of type x changes from q(x)

to q(x) − α · costF (x) for some (intuitively small) α > 0. We call the resulting wealth
distribution q̂(x). Notice that, in general, q̂(x) may be different from q(x)−α · costF (x),
since the cost of F may rearrange the order of types (recall that distributions such as
q(x) are assumed to be nondecreasing). As we shall see in the inequity theorem proof
of Section 6.2, this turns out to never be the case and moreover the inequality increases
as a result.

In the following, we define q to be the wealth distribution of agents before playing
the game. We let q0 = q − α · costF0 be the wealth distribution after playing the game
without tolls, where costF0 (x) =

∑
e∈F (x) `e(c

F (e)). The move from q to q0 is defined as
the impact of travel, the variation that is due only to the fact that players are engaged
in a game. When tolls are levied, we have a second move, from q0 to q̂, defined as the
impact of tolls.

6.2 The inequity theorem

Tolls can be used in congestion games so as to induce socially optimal flows (from the
perspective of total cost) as Nash equilibrium (Cole, Dodis, and Roughgarden, 2003;
Fleischer, Jain, and Mahdian, 2004). We next prove a general theorem showing that
tolls always exacerbate societal inequality in symmetric routing games. So, in a sense
to achieve optimality from the perspective of social welfare we have to pay a hidden
cost in terms of fairness.

6.2.1 Formulation and proof of the theorem

Theorem 6.2.1 (Inequity theorem). In any Nash equilibrium of any symmetric congestion
game with type-specific costs, any set of positive edge tolls τe increases the inequality of the
population. More specifically,

4If the wealth transfer is less than the difference of their wealth, the relative ordering of the wealth of
the two agents does not change.
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• The impact of travel is zero: the Gini coefficient of the ex ante wealth distribution q is
equal to the Gini coefficient of the toll-free wealth distribution q0, G(q0) = G(q).

• The impact of tolls is nonnegative: the Gini coefficient of the ex ante wealth distribution
is lower than (or equal to) the Gini coefficient of the ex post wealth distribution q̂ =

q − α · costF , or G(q̂) ≥ G(q) = G(q0).

Additionally, if the quantile distribution of wealth is increasing, the Gini coefficient increases
strictly.

Canonical Nash equilibrium flows are piecewise constant

We show in this section that there exists 0 = a1 ≤ · · · ≤ aN+1 = 1 real numbers such
that if F̄ is an equilibrium flow, then F̄ (x) = F̄ (y) for x, y ∈ (ai, ai+1), ∀i ∈ 1, . . . , N .

Cole, Dodis, and Roughgarden (2003) show that for routing games with type-specific
cost functions, a Nash equilibrium exists that satisfies the interval definition above. The
authors call such an equilibrium canonical, when in if x ≤ y, then∑

e∈F̄ (x)

`e(c
F̄ (e)) ≥

∑
e∈F̄ (y)

`e(c
F̄ (e)) and

∑
e∈F̄ (x)

τe ≤
∑

e∈F̄ (y)

τe .

Higher wealth agents thus incur a lower latency but higher tolls than lower wealth
agents.

Canonical equilibrium flows exist even if the quantile distribution is discontinuous
or not everywhere increasing.

Proof of the theorem

The proof of the impact of tolls is done in three steps. First, we show that if two wealth
distributions with equal means cross at one point, one has a higher Gini coefficient
than the other. This is equivalent to the transfer principle, or Pigou-Dalton principle
of wealth inequality measures. Second, we show that when a distribution is obtained
by decreasing proportionally less higher wealth than lower wealth—in other words,
a regressive tax—then the resulting distribution has a higher Gini coefficient than the
original one, i.e., is more unequal. Third, we show that under equilibrium in the game,
players with higher wealth have a relatively lower path cost than players with lower
wealth. Finally, Theorem 6.2.1 is obtained as a corollary of the three lemmas.

We present in Figure 6.2 a somewhat visual representation of our lemmas. By fixing
the wealth of the median player to 1, we observe the two quantile distributions (before
and after the game) cross at this exact point, leading to ex post polarised wealth by
Lemma 6.2.1. This in turn implies that the Lorenz curve before the game dominates the
Lorenz curve after the game.
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FIGURE 6.2: As the game is played, lower wealth agents lose relatively more of their wealth
than high wealth players. Left: Quantile distribution of wealth before and after the game.
Right: Lorenz distribution of wealth before and after the game, obtained at t by computing the
total fraction of wealth owned by agents up to quantile t. The distribution after the game is
Lorenz dominated by that before the game.

Lemma 6.2.1. Suppose q and q̂ are two wealth distributions (represented by their quantile
functions) of equal means, i.e., µ =

∫ 1
0 q(x)dx =

∫ 1
0 q̂(x)dx = µ̂. If there exists x∗ such that

q̂(x) ≤ q(x),∀x ≤ x∗, and q̂(x) ≥ q(x) otherwise, then G(q) ≤ G(q̂).

Proof. We will show that L(x) ≥ L̂(x), ∀x where L(x) is the Lorenz curve of q defined
in (LC) and thus G(q) ≤ G(q̂). First note that for x ≤ x∗,

L̂(x) ≤ L(x)

since q(x) ≥ q̂(x).
For x ≥ x∗, we have

L̂(x) ≤ L(x) ⇐⇒
∫ x∗

0
q̂(y)dy +

∫ x

x∗
q̂(y)dy ≤

∫ x∗

0
q(y)dy +

∫ x

x∗
q(y)dy

⇐⇒
∫ x∗

0
[q(y)− q̂(y)]dy ≥

∫ x

x∗
[q̂(y)− q(y)]dy

The last inequality is true since by µ = µ̂ we get∫ x∗

0
[q(y)− q̂(y)]dy =

∫ 1

x∗
[q̂(y)− q(y)]dy
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Lemma 6.2.2. Suppose two wealth distributions (represented by their quantile functions) q and
q̂ are such that q̂(x) = β(x) · q(x) and 1 ≥ β(y) ≥ β(z) > 0 for y ≥ z.5 Then G(q) ≤ G(q̂).

Proof. If we rescale distribution q̂ to q1(x) = µ
µ̂ q̂(x) the Gini remains invariant. It suffices

to show that G(q) ≤ G(q1). Since µ = µ1, we can compare the two distributions using
Lemma 6.2.1.

Introduce β1(x) = µ
µ̂β(x), the transformation of income from q to q1. β1(x) is a

nondecreasing function of x. If β1(x) < 1 for all x, then obviously we cannot have
µ = µ1 and the same holds if β1(x) > 1 for all x. Hence there exists some x∗ such
that β1(x∗) = 1. Moreover, by the monotonicity properties of β1, the income order is
preserved and x∗ satisfies all the properties of Lemma 6.2.1. Thus, G(q) ≤ G(q1) =

G(q̂).

Lemma 6.2.3. Let 0 ≤ x ≤ y ≤ 1 and F̄ be an equilibrium flow. Then costF̄ (x)
q(x) ≥ costF̄ (y)

q(y) .

Proof. Suppose F̄ is an equilibrium flow. At equilibrium, the following holds:

costF̄ (x) ≤
∑
e∈P

`e(c
F̄ (e)) · q(x) + τe , ∀P ∈ P .

Thus for x ≤ y,

costF̄ (y)

q(y)
≤
∑
e∈P

`e(c
F̄ (e)) +

τe
q(y)

, ∀P ∈ P

≤
∑

e∈F̄ (x)

`e(c
F̄ (e)) +

τe
q(y)

≤
∑

e∈F̄ (x)

`e(c
F̄ (e)) +

τe
q(x)

=
costF̄ (x)

q(x)
.

We can now prove the inequity theorem.

Inequity Theorem. The ex post wealth of x under flow F is given by

q̂(x) = q(x)− α · costF (x)

= q(x)
(

1− α · costF (x)

q(x)

)
5I.e., q̂ is obtained from q by a transformation that reduces lower wealth relatively more than higher

wealth. Income order is preserved and µ̂ ≤ µ.
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Thus, at equilibrium under flow F̄ , wealth is scaled by β(x) = 1−α · costF
q(x) , where β

is nondecreasing by Lemma 6.2.3. In Lemma 6.2.2, if q is our initial wealth distribution,
before the game is played, then q̂ is our wealth distribution after the game is played, and the
β we have just defined satisfies the assumptions of the Lemma. The inequity theorem
follows.

To show that the impact of travel is null, we consider the Nash equilibrium flow F̄

of the game with costs

costF̄ (x) =
∑

e∈F̄ (x)

`e(c
F̄ (e)) · q(x) = q(x)

∑
e∈F̄ (x)

`e(c
F̄ (e)) .

Akin to the Wardrop equilibrium, we can show that all agents incur the same la-
tencyL =

∑
e∈F̄ (x) `e(c

F̄ (e)). Suppose x ≤ y and
∑

e∈F̄ (x) `e(c
F̄ (e)) <

∑
e∈F̄ (y) `e(c

F̄ (e)).
Then by switching to F̄ (x), y can decrease its cost q(y)

∑
e∈F̄ (y) `e(c

F̄ (e)). The same ar-
gument holds if

∑
e∈F̄ (x) `e(c

F̄ (e)) >
∑

e∈F̄ (y) `e(c
F̄ (e)).

Since all players incur equal latency L, we have

q0(x) = q(x)− α · q(x) · L = q(x)(1− α · L) .

By the invariance of Gini coefficient to scaling of wealth, G(q0) = G(q) and the impact
of travel is null.

6.2.2 Strictness of the inequity theorem

The theorem also holds for the discontinuous case, which is typical to statistical analy-
ses of inequality that group individuals under some average wealth. When the quantile
function is not strictly increasing, it is possible that the inequality is left unchanged by
the price mechanism.

In the Pigou example, one can take the following continuous wealth distribution
q(x) = 0.5 for x ≤ 0.5, q(x) = −1 + 3x for 0.5 ≤ x ≤ 2/3 and q(x) = 1 for x ≥ 2/3,
without any price to the variable cost link. All agents incur a cost equal to their wealth
at the Nash equilibrium. We now set the price of the variable latency link to 0.75.
Agents from quantile 0 to quantile 2/3 occupy the constant latency link, and the 1/3

mass of agents with wealth 1 distributes itself between the two links, with 75% of them
using the variable latency link (since q(x) · `(z) + τ = 1/4 + 3/4 = q(x)). Again all
agents incur a cost equal to their wealth, and thus the inequality is the same as before
the price mechanism.

A nonincreasing but not everywhere decreasing edge cost function is unnatural: it
would assign the same cost to two agents with different wealth, violating the concept
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of a decreasing tradeoff from money to time with wealth. The specific edge cost func-
tion under study, τeq + `e(z), is certainly decreasing in wealth. We then show that the
second assumption to obtain a strict increase of inequality, a strictly increasing quan-
tile function, is sufficient. In this case, agent costs are a strictly decreasing function of
wealth, i.e., costF (x) > costF (y) for 0 ≤ x < y ≤ 1 in Lemma 6.2.3. The function
β in Lemma 6.2.2 is thus strictly increasing, implying that all inequalities are strict in
Lemma 6.2.1.

6.2.3 Extension to general inequality measures

Lemma 6.2.1 expresses that in symmetric games, the ex ante wealth distribution Lorenz
dominates the ex post distribution, in the sense that for any quantile x, we have L(x) ≥
L̂(x). Lorenz dominance, denoted by ≥L is a consistent ranking with all indices of
inequality I that satisfy the four axioms given in Section 6.1 (population principle,
anonymity, scale invariance and transfer principle) (Sen et al., 1997). Thus, if q ≥L q̂,
then I(q) ≤ I(q̂).

Lorenz domination is only a partial order, e.g., if two Lorenz curves intersect, none
Lorenz-dominates the other. However, in our setting, this turns out to never be the case.
Thus a large family that includes the Gini, Theil (1967) and Atkinson (1970) indices can
be used to measure the increase in inequality of Theorem 6.2.1.

Theorem 6.2.2. For any wealth inequality measure satisfying the axioms of invariance to pop-
ulation scaling, anonymity, invariance to multiplicative scaling and the transfer principle, the
inequity theorem holds and inequality increases as tolls are levied on the players.

Remark 1 (Necessity and sufficiency of the four axioms). The proof given by Sen et al.
(1997) makes clear that each of the four axioms is necessary to show that Lorenz dom-
inance implies the consistent ordering on inequality measures. First, one wishes to
compare two populations of same size and same mean. Lorenz ordering is then equiva-
lent to the consistent ordering of social evaluation functions (SEF), a class of functions
aggregating the utility of all agents in the population, under some concavity assump-
tions (Dasgupta, Sen, and Starrett, 1973).

• To compare populations q1, q2 of different sizes, say m and n respectively, one
needs to have the population axiom allowing us to replicating the population
while keeping the SEF constants. We can then compare the SEF at qn1 and qm2 ,
each population replicated respectively n and m times, which are both of the
same size.

• If the two populations have different means, the invariance to rescaling is neces-
sary to compare say q1 with µ1

µ2
q2. The measure of inequality is unchanged from

q2 to µ1

µ2
q2 and both q1 and µ1

µ2
q2 now have equal means.
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• The anonymity axiom ensures that we can build the Lorenz curve by ordering
members of the population according to their quantile. If not, different orderings
of the population would yield different measures of inequality.

• Finally, the transfer axiom ensures that regressive transfers worsen the inequal-
ity. As seen in the proof of Lemma 6.2.2, the distribution after such transfers is
Lorenz dominated by the original distribution. Failing that, we would not ob-
tain a consistent ordering from Lorenz domination for other inequality measures.
Additionally, all inequality measures which assign 0 to perfect equality (a prop-
erty called normalisation) would give negative values after a regressive transfer,
while the original equal distribution obviously Lorenz dominates the resulting
distribution.

Although we do not use the reverse implication, it is also true that for any inequality
measure satisfying all four axioms, there is a corresponding consistent ordering on
Lorenz curves, showing sufficiency of the axioms.

6.3 The asymmetric case

6.3.1 Decomposition for asymmetric games

Does the inequity theorem hold for the asymmetric nonatomic routing games? In gen-
eral, the answer is no, with a few caveats. First, asymmetric routing games, by their
very nature, introduce populations that are not comparable: they have different sources
and destinations as well as different available paths to reach one from the other. As
shown in the remainder of this section, we cannot find a strict equivalent to the in-
equity theorem in the asymmetric case.

However, the inequity theorem in symmetric games carries over in the following
way: among each subpopulation, the inequality worsens. As tolls are introduced, users
in each commodity polarise such that higher incomes use tolled roads, following the
construction presented in Section 6.2.

There is a clear parallel between asymmetric routing games and the measurement
of inequality in other contexts, including in the rural/urban divide or the global in-
equality of wealth (Milanovic, 2016). In both cases, one would like to understand how
inequality within each subpopulation (the rural and the urban populations, in the for-
mer; each individual nation, in the latter) is changed due to some economic activity.
This alone would not paint the complete picture: one would also have to measure how
the inequality between subpopulations has changed too.
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Among the economic indices of inequality introduced previously, the Theil indices
deal well with such a decomposition. The Theil T index is defined by

TT (q) =

∫ 1

0

q(x)

µ
ln
q(x)

µ
dx

and the Theil L index by

TL(q) =

∫ 1

0
ln

µ

q(x)
dx.

In the discrete case of a partition ofN agents intoM different subgroups, it is known
that

TT =
M∑
i=1

siTi +
M∑
i=1

si ln
xi
µ

where si is the share of total income possessed by group i, Ti is the Theil index TT

of group i, xi is the average income of an agent in i and µ is the average income of
all agents. The first sum gives us the measure of within-groups inequality, while the
second is that of between-groups inequality.

The Gini coefficient does not admit such an additive decomposition, introducing
instead an overlap term that does not allow the same intuitive reasoning on variations
of inequality in the nonatomic asymmetric routing games. Indeed, by the inequity
theorem in the symmetric case, we know for all relative income inequality measures,
including the Theil indices, that within-groups inequality increases. Does it mean that
the term

∑M
i=1 siTi always increases after the game? It is not the case for the Theil T

index.
Indeed, though we know that T̂i ≥ Ti for all i, it is entirely possible that the shares

of total income of each group also change in a way that
∑M

i=1 ŝiT̂i ≤
∑M

i=1 siTi. The T
index thus does not exactly reflect the property given by the inequity theorem.

Fortunately, the L index decomposes neatly into a weighted average of the sub-
group’s L indices with weights depending only on the population shares:

TL =

M∑
i=1

Ni

N
Li +

M∑
i=1

Ni

N
ln
Ni/N

si
.

This implies that for the Theil L index, by the inequity theorem, the within-groups in-
equality is always non-decreasing. The inequality thus only decreases if the between-
groups component is negative and of a greater magnitude than the within-groups com-
ponent.
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S2 T2

S1 T1

D2 = [xc, 1]

D1 = [0, xc]

`u(x) = 1, τu = 0

`d(x) = x, τd = 1+xc
2

`l = 0, τl = 0

FIGURE 6.3: A multicommodity example: the interval D1 of agents with income between 0 and
xc wishes to go from S1 to T1, while the interval D2 goes from S2 to T2. Tolls and latencies are
given along the edges.

TABLE 6.1: Within-groups, between-groups and total inequality differentials. The total inequal-
ity differential is equal to the sum of the between- and within-groups differentials, up to round-
ing produced for this table. We take α = 0.01.

Theil T index Theil L index

xc
1
6

1
2

1
6

1
2

Within-groups differential (×10−3) 3.67 0.88 4.05 0.31

Between-groups differential (×10−3) -0.86 -2.66 -2.26 -3.23

Total inequality differential (×10−3) 2.81 -1.79 1.80 -2.91

6.3.2 Example of decomposition

In Figure 6.3, two populations are travelling along different networks. In a sense, this
example is artificial as the two populations never share paths. It illustrates however
that inequality can evolve in two different directions, depending on the within- and
between-groups components. In this example, we use xc as a parameter to control
the size of the unaffected population on the upper network, and thus indirectly the
importance of the between-groups inequality component: as the income of agents on
the lower network decreases due to the cost of latency and tolls, their income gets
closer to that of the agents on the upper network, and thus between-groups inequality
is reduced.

The calculations for the lower network are similar to those done in Section 6.5 and
are not repeated here. The Theil T indices are obtained for both populations’ ex ante
and ex post income distribution, denoted by Ti and T̂i respectively for population i.

When xc = 1
6 , a small portion of the population is on the upper network. The

within-groups inequality overcomes the between-groups inequality and thus T̂ > T .
On the other hand, when xc = 1

2 , we have instead T̂ < T : the inequality increase in the
lower network is compensated by the reduction in between-groups inequality. We give
in Table 6.1 the computed numbers for the example.
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6.4 The inequity index

The inequity theorem shows that under general conditions of the cost functions, the
income inequality between agents increases after tolls are levied. In this section, we
quantify this deterioration of equality by introducing a new metric. We have captured
the importance of the game costs to the agents’ income by a parameterα > 0, intuitively
small. The inequity (index) is defined as the derivative of the Gini coefficient as α goes
to zero.

Definition 6.4.1. Let Γ be a nonatomic symmetric congestion game. Agents have an
initial ex ante distribution (q(x))x∈[0,1] and incur a cost costF (x) under flow F . Let
qα(x) = q(x) − α · costF (x) be the ex post income distribution for some α > 0. The
inequity of Γ is defined as

I(Γ) = lim
α→0+

G(qα)−G(q)

α
.

Note that this notion is well-defined. The Gini coefficient for distribution qα is given
by

G(qα) = 1− 2

∫ 1
0

∫ x
0 (q(t)− α · costF (t))dtdx∫ 1

0 (q(x)− α · costF (x))dx
= 1− 2

∫ 1
0 Q(x)dx− α

∫ 1
0

∫ x
0 costF (t)dtdx

µ− α · SC

where µ is the total income of distribution q and SC is the social cost. This function is
indeed differentiable with respect to α, provided the obvious requirement of µ > 0 is
satisfied.

6.4.1 Scale invariance of the inequity index

The inequity theorem implies that the inequity is always nonnegative. For the rest of
the paper we will focus on the canonical cost functions (CAN). As a reminder, the cost
of agent x in edge e is

q(x) · `e(cF (e)) + τe .

The canonical cost functions, besides having strong experimental justification (Abrantes
and Wardman, 2011; Börjesson, Fosgerau, and Algers, 2012) provide also significant ad-
vantages in the theoretical study of inequity. Specifically, the inequity index is invariant
under multiplicative scaling of the population wealth.

Theorem 6.4.1 (Robustness under scaling of income). Assume agent cost functions are in
canonical form (CAN) in a game Γ. Then the inequity is scale invariant: If the wealth of each
agent is scaled by a constant λ > 0 and optimal tolls are used in the resulting game Γλ, then
I(Γ) = I(Γλ).
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Proof. Optimal tolls τ∗e in the original (unscaled) game Γ minimise the social cost as
defined by the social planner, i.e., the sum of all player latencies. In the scaled version
of the game, Γλ, the new optimal tolls τ̂∗e should be such that the resulting flow is
identical to the minimising flow in the original game. In that case, the social optimum
is realised for Γλ.

It is possible to show that this result holds for τ̂∗e = λτ∗e . Indeed, since

(λq(x)) · `e(cF (e)) + λτe = λ(q(x) · `e(cF (e)) + τe)

all costs are scaled by the same constant, and thus the strategic content of the game is
unchanged (i.e., all players act as if the costs were the same as in Γ).

The Gini coefficient is scale invariant in the sense that if the wealth distribution q

is multiplied by λ > 0, then G(q) = G(λq). In the canonical form (CAN), the ex post
distribution is

q̂(x) = q(x)− α ·
∑

e∈F (x)

(
q(x) · `e(cF (e)) + τe

)
,∀x .

If wealth is scaled by λ > 0 and optimal tolls are selected by the social planner, the new
distribution is

λq(x)− α ·
∑

e∈F (x)

(
λq(x) · `e(cF (e)) + λτe

)
= λq̂(x) ,∀x .

for which the Gini coefficient is equal to G(q̂). This further implies that the inequity of
game Γλ is equal to that of Γ.

6.4.2 Robustness to no-regret learning

So far we have looked at the inequity index in the context of agents playing the Nash
equilibrium of the routing game. However, it is possible to relax this assumption and
let agents implement a no-regret strategy of their own.

Let F1, F2, . . . be a sequence of flows obtained from agents repeatedly playing the
game. Agent x is implementing a no-regret algorithm if it has vanishing regret, i.e.,

R(T ) =
1

T

T∑
i=1

costFi(x)−min
P∈P

1

T

T∑
i=1

∑
e∈P

(
q(x) · `e(cFi(e)) + τe

)
→ 0 as T →∞ .

We also call an ε-approximate Nash equilibrium a flow Fε such that∫ 1

0
costFε(x)dx−

∫ 1

0
min
p∈P

∑
e∈P

(
q(x) · `e(cFε(e)) + τe

)
dx ≤ ε .
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Following the results from Blum, Even-Dar, and Ligett (2006), we can show that un-
der regret-minimising agents, the flow converges to that of an approximate equilibrium
under the assumption of a finite number of wealth levels w1, . . . , wK . This assumption
is rather realistic since in practice there can only be a finite number of wealth levels. Ad-
ditionally, any continuous distribution over wealth can be approximated to arbitrarily
high accuracy by a distribution of finite but large enough support.

Theorem 6.4.2 (Robustness under no-regret learning). Given a finite number of income
levels, the inequity index is uniquely defined under the assumption of no-regret learning agents.
Specifically, if all agents follow a no-regret algorithm, we have

lim
α→0;α>0

lim
T→∞

1
T

∑T
t=1G(q̂t)−G(q)

α
= I(Γ)

where q̂t is the ex post wealth distribution of the t-th instance of the game.

Before the proof, we need the two following technical lemmas.

Lemma 6.4.1. F̄ is an equilibrium flow for Γ = (G, q, cost) if and only if F̄ is an equilibrium
flow for Γt = (G, q, costt), where

costFt (x) =
costF (x)

q(x)
.

costFt (x) is the perceived cost in terms of time to agent x under flow F .

Proof. Follows from (NE).

costF (x) ≤
∑
e∈P

`e(c
F (e)) · q(x) + τe ,∀P ∈ P

⇔costF (x)

q(x)
≤
∑
e∈P

`e(c
F (e)) +

τe
q(x)

,∀P ∈ P

Lemma 6.4.2. If F is a ε-NE of Γt, then F is a ε′-NE of Γ, where ε′ = (1−
√
ε)
√
ε · qM + o(ε)

and qM = supx∈[0,1] q(x) = q(1).

Proof.

F is ε-NE of Γt ⇒
∫ 1

0
costFt (x)dx−

∫ 1

0
min
p∈P

∑
e∈P

(
`e(c

F (e)) +
τe
q(x)

)
dx ≤ ε

⇒ costFt (x)−min
p∈P

∑
e∈P

(
`e(c

F (e)) +
τe
q(x)

)
≤
√
ε

for more than (1−
√
ε) agents
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⇒ costF (x)−min
p∈P

∑
e∈P

(
q(x) · `e(cF (e)) + τe

)
≤ q(x)

√
ε ≤ qM

√
ε

for more than (1−
√
ε) agents

⇒
∫ 1

0
costF (x)dx−

∫ 1

0
min
p∈P

∑
e∈P

(
q(x) · `e(cF (e)) + τe

)
dx

≤ (1−
√
ε)
√
ε · qM + o(ε)

We can now prove the result for the stability of the inequity index to no-regret learn-
ing agents.

Proof. The proof consists of two steps. In the first step we will show that our symmetric
game of type-specific costs Γ = (G, q, cost) reduces to an asymmetric congestion game
Γ̂. In the second step, we will apply results about the behaviour of no-regret dynamics
in asymmetric congestion games from (Blum, Even-Dar, and Ligett, 2006) to prove the
robustness of the inequity index.

Let Γt = (G, q, costt) the game with cost equal to the perceived latency. For every
edge e in Γt, construct the parallel edges (êi)

K
i=1 linking e to its original endpoint. The

price of edge êi is constant and equal to τe
wi

. Now for each path P ∈ P , the player of
type i has an associated path P̂ ∈ P̂ that uses all the edges in P as well as êi. Since Γt

and Γ̂ are payoff-equivalent games, under the assumption that our latency functions
have bounded slope we can use the results from Blum, Even-Dar, and Ligett (2006) to
show that the inequity is stable under no-regret learning.

As long as latency functions are of bounded slope, costFt (x) is of bounded slope,
since the income of players and tolls are bounded. No-regret algorithms will therefore
approach an approximate ε-Nash equilibrium of Γt for some ε > 0, and thus a ε′-Nash
equilibrium of Γ where ε′ is defined as in 6.4.2, sometimes takeb here to be a function
of ε. In the following, requiring the regret to be under ε yields a f(ε)-NE equilibrium of
Γt in most time steps, which is thus a g(ε)-NE equilibrium of Γ in most time steps, for
g = ε′ ◦ f .

Let α and some ε be fixed. There exists a time Tε such that after Tε, R(T ) ≤ ε. By
Blum, Even-Dar, and Ligett (2006), at most a fraction Kε

1
4 of the first Tε games is not

a g(ε)-NE, where g is a function that goes to zero when ε also goes to zero and K is
a constant.6 Tε is a function in O( 1

ε2
) so as ε goes to zero we have that Tε goes to ∞.

Call Aε the set of time periods where q̂t is obtained from a g(ε)-approximate NE and Bε

6Precisely, there is a fractionms
1
4 ε

1
4 of time periods where the flow is not an ε′(ε+2

√
sεn+2m

3
4 s

1
4 ε

1
4 )-

NE, where m is the number of edges, s is a bound on the slope of edge cost functions and n is the largest
number of edges in a path.
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where this is not the case. We have

1

Tε

Tε∑
t=1

G(q̂t) =
1

Tε

∑
t∈Aε

G(q̂t) +
1

Tε

∑
t∈Bε

G(q̂t) (6.1)

and
1

Tε

∑
t∈Bε

G(q̂t) ≤ 1

Tε
Kε

1
4 · Tε = Kε

1
4 (6.2)

where the last inequality holds due to the Gini coefficient being bounded by 0 and 1.
Thus, the maximum distance between the Gini coefficient of q̂t and that of the NE is 1,
for the at most εTε time steps where we do not have a g(ε)-NE.

It remains to prove that for the other time steps in Aε, we are approaching the NE
costs that give rise to q̂ as ε goes to zero. Indeed, let Fε be the flow corresponding to an
ε-approximate NE. In congestion games, the vector of path costs (Cp)p∈P realised at a
NE is unique. Take a decreasing sequence of (εk)k → 0 as k →∞ and flows Fεk that are
εk-NE. Their associated cost vectors are (Cεkp )p. Suppose that as limk→∞(Cεkp )p 6= (Cp)p.
By compactness, up to a subsequence, Fεk converges to some flow F that is a NE. But
for this flow F the path costs are different from (Cp)p. This is a contradiction.

On the other hand, the Gini coefficient is a continuous function of the agents’ costs,
so any sequence of ε-NE approximating a NE of the game will approach its Gini coeffi-
cient. Coming back to Equations (6.1) and (6.2), we know that

1

Tε

Tε∑
t=1

G(q̂t) ∼ε→0 (1− ε)G(q̂) +O(ε
1
4 )

and thus 1
T

∑T
t=1G(q̂t)→ G(q̂) as T →∞.

6.5 Inequality in the Pigou network

We illustrate the model with the Pigou network, where a mass 1 of agents travels be-
tween two nodes along two edges. The upper link has variable latency `(z) = zd and
toll τ , while the lower link has constant latency equal to 1. The quantile function of
wealth in the population is q(x) = x.

One can prove that for a fixed toll τ , at equilibrium, there exists a quantile x∗ such
that individuals above quantile x∗ use the upper link, while individuals below quantile
x∗ use the lower link. Since agent x∗ must be indifferent between the upper link and
the lower link, for d = 1, we solve for x∗

1 = (1− x∗) +
τ

x∗
⇔ x∗ =

√
t.
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FIGURE 6.4: When the variable latency is set to `(z) = z, the optimal toll τ1 = 1/4 induces the
highest inequity. This is not the case for `(z) = z2, where the optimal toll is τ2 = 0.281766 but
the maximiser of inequity is τ = 0.325487. The inequity remains nonnegative for any toll and
positive for flows routing a positive mass on the upper link.

The social planner who wishes to induce the optimal latency flow must set τ = 1/4

so that x∗ = 1/2. We let τd represent the optimal toll, i.e., the toll which induces the
optimal flow. For d = 1, τd is also the maximiser of inequity: the marginal impact of
the game on wealth and inequality is at its highest when latency is minimised!

However, as Figure 6.4 shows, this is no longer true for τ2, when `(z) = z2. There,
the optimal toll does not induce the highest inequity. By virtue of Theorem 6.2.1, the
inequity remains nonnegative for any toll and positive for flows routing a positive mass
on the upper link.

6.6 Designing for equity

Inequality may increase after tolls are levied, due to the regressive nature of the tax.
In this section, we investigate three mechanisms via which a system designer can ei-
ther redistribute or optimise for equity. The simplest mechanism operates a direct
transfer from the levied tolls to the population, for which we provide justification in
Section 6.6.1. Recent proposals instead suggest to reinvest the tolls into funding for
public transportation. Given the relatively inelastic travel times to congestion seen in
Section 5.4 for this class of commuters, we adapt the Pigou example by equating the
constant cost link as “public transportation” and improving the travel time on the link
proportionally with the collected tolls (Section 6.6.2). Finally, we provide the model
and result for a social planner who wishes to operate a tradeoff between efficiency and
inequality by modifying its social cost function (Section 6.6.3).
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6.6.1 Tax redistribution

We turn our attention to a redistributive model of tolls. In the simplest case, the col-
lected tolls are given back uniformly to all agents. This progressive transfer reduces the
Gini coefficient from that of q̂, the ex post distribution, as we shall see.

Proposition 6.6.1. Let F̄ be an equilibrium flow on a routing game Γ with tolls τ and wealth
q. Players incur a cost equal to costF̄ (x) =

∑
e∈F̄ (x) q(x) · `e(cF̄ (e)) + τe. The total collected

tolls under a flow F are T =
∑

e∈E Feτe. Let costFr (x) = costF (x) − T be updated costs for
the agents, and Γr the game played with costr cost functions. Then F̄ is an equilibrium flow of
Γr.

Proof. By (NE), a flow F̄ is at equilibrium if and only if for all agents x ∈ [0, 1], and for
all paths P ∈ P ,

costF̄ (x) ≤
∑
e∈P

q(x) · `e(cF̄ (e)) + τe

Since

costF̄r (x) =
∑

e∈F̄ (x)

q(x) · `e(cF̄ (e)) + τe −
∑
e∈E

F̄eτe

= costF̄ (x)−
∑
e∈E

F̄eτe

≤
∑
e∈P

q(x) · `e(cF̄ (e)) + τe −
∑
e∈E

F̄eτe ,∀P ∈ P

= costF̄ ,Pr (x) , ∀P ∈ P

F̄ is an equilibrium flow of Γr.

6.6.2 A subsidised Pigou network

Take the Pigou example, unit demand, flow f ∈ [0, 1] is routed on the variable cost
link of x, flow 1 − f is routed on the constant cost link of 1. Agent wealth follows the
distribution q(x) = x.

Our data has shown that the Stress of Catastrophe of users in public transportation
is very close to 1. In turn, this implies that their travel is close to being independent
of any level of congestion. This is especially true as the use of buses in our dataset is
much lower than that of train services. We can therefore equate the constant latency
link with public transportation, normalised to 1.

Following recent proposals to channel the tax levied through tolls into improved
public transport infrastructure, we modify the Pigou example. If a fraction f of users
incurs a toll τ , then the total collected tax is τf . We can assume that a fraction γ > 0

of that toll is employed to reduce the constant cost on the lower link—perhaps via the
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FIGURE 6.5: We plot the Gini coefficient as a function of the tolls in the Pigou example. The
blue line is the Gini coefficient of the ex post wealth distribution in the non-subsidised Pigou,
while the orange line is the Gini coefficient of the ex post wealth distribution in the subsidised
game.

construction of an additional train line, bus service or cycling lane. The new cost of the
lower link is then 1− γτf .

The agent of quantile x∗ must be indifferent between choosing to use the upper link
or the lower link, and thus faces the equation

x(1− x) + τ = x(1− γτ(1− x))⇔ (1 + γτ)x2 − γτx− τ = 0

⇔ x∗ =
γτ +

√
(γτ)2 + 4τ(1 + γτ)

2(1 + γτ)

As γ or τ increases, the quantile of the “switching” agent also increases, such that
agents are diverted from the variable cost link towards the constant cost link. The Gini
coefficient of ex post wealth distribution of the modified Pigou is lower than that of the
ex post wealth distribution of the classical Pigou. We show this result in Figure 6.5.

6.6.3 Balancing efficiency and inequity

We briefly present results obtained in Gemici et al. (2019). In a parallel links network,
a planner can efficiently compute a precise tradeoff between efficiency and equity, as
measured by the Gini coefficient. The model assumes agents equally distributed over
a fixed number of wealth levels. Cost functions on the links are piecewise continuous
and constant with increments at multiples of the fraction of agents on one wealth level.
The planner seeks to minimise ∑

e

`e(c
F (e)) + λG(qα)

where qα is the wealth distribution after the game and λ > 0 measures the importance
of equity to the planner. A dynamic programming algorithm can be found to set tolls
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such that the objective is minimised. More details are presented in Gemici et al. (2019).

6.7 Wealth and mobility in Singapore

We use detailed transportation data gathered through Singapore’s National Science Ex-
periment (NSE) (presented in Section 5.1) to test how income inequality affects the dis-
tribution of transportation delays in a representative sample of students (Monnot et al.,
2016; Monnot, Benita, and Piliouras, 2017; Wilhelm et al., 2016). Although Singapore is
the third most densely populated country in the world, the modern infrastructure, cost
of private cars, and significant tolls in Singapore minimise congestion on the roads. We
examine whether this gain in efficiency incurs costs in terms of income inequality, as
predicted by the theoretical results in this paper. The NSE dataset enables us to ac-
curately split student trips in the morning—the time of the day when tolls are most
onerous—by the transportation mode (bus, car, walk, and train) (Wilhelm et al., 2017).
We then combine the travel data with a dataset on property prices to assess the rela-
tionship between income and the average duration and average distance of trips by
transportation mode.

Rental prices are shown to correlate with income and thus provide here a reasonable
proxy to the study of wealth distribution. Our rental prices dataset associates a mean
rental price to each populated subzone of Singapore (219 in total). The distribution
of rental prices among subjects in our dataset appears to follow a power law, with
numerous students in areas with lower prices and few students in high prices areas
(Figure 6.6).

Two trends are observed in the data. For subjects outside of the 0.1% top rental
prices, the relationship between rental prices and average travel time is significantly
negative: higher rental prices correlate strongly with lower travel time. On the contrary,
for subjects in the top 0.1% rental prices, travel time is significantly higher than any



104

FIGURE 6.7: Average travel time of individual subjects (n = 16563), by rental prices (bin size =
SGD200). Outliers of the top 0.1% subjects are omitted. Standard error is represented on the left
histogram. The average commute duration per rental price group decreases with rental price.
On the right, we present the duration is broken down by mode of transportation.

other group. The low number of samples for the latter however does not allow to
conclude definitely that this is significant.

As can be seen in Figure 6.8, when one compares low-rental and high-rental groups,
there is a notable increase in car usage and decrease in the use of walking and public
transportation. Because cars are much faster than using bus and walking, the use of
cars is associated with a sizeable difference in the average duration that subjects spend
in traveling to school (Figure 6.7). Subjects in the lowest two rental groups spend on
average 7 to 5 minutes more on their commute compared to middle-income groups.
Thus, the Singaporean case—which is an ideal setting to examine the relationship be-
tween inequality and transportation delays—offers positive evidence on the inequity
theorem.

6.8 Discussion

The question of efficiency and equality has a long history in economics. At the turn of
the 20th century, Vilfredo Pareto and Arthur C. Pigou elucidated the concept of social
welfare, with the first providing an efficiency-driven optimality criterion (the epony-
mous Pareto-efficiency) and the second a broad inquiry into the nature of “welfare”
(Pigou, 1920). In both works, inequality and distributional fairness feature prominently
alongside discussion of efficiency, embodied by the “national dividend” in Pigou.

The definition of the “social welfare function” (SWF), was not fully formalised until
Samuelson (1948), after interpersonal comparisons of utility were deemed too problem-
atic (Baujard, 2013). SWFs attempt to provide orderings on states of the society, which,
hopefully, respect the individual orderings of its members. However, Kenneth J. Arrow
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FIGURE 6.8: Average travel distance of individual subjects (n = 16563), by rental prices (bin
size = SGD200). Outliers of the top 0.1% subjects are omitted. Standard error is represented on
the left histogram. The average commute distance does not follow a regular trend with rental
price, but car usage distance does increase while train distance decreases.

showed that under “reasonable” axioms,7 in general such a consistent SWF cannot be
found (Arrow, 1951). Yet, the separation between efficiency and inequality appears to
have been sealed by the second theorem of welfare economics which justifies that any
Pareto-efficient distribution can be reached by tuning the initial allocation of goods in
an economy (Arrow and Debreu, 1954). The issue of distributional fairness is taken
by the next generation of market designers as the responsibility of the policy-maker,
with the economist merely supplying a set of designs with varying values of efficiency,
fairness or complexity (Li, 2017), again in the spirit of the welfare theorems.

Appending some measure of inequality to the social welfare function—here, a sim-
ple version of SWF, where heterogeneity appears as a result of differing values for time
among agents—, as we have done in this Chapter, may appear unnatural, but makes
the question of distributional fairness hard to look away from. The tension between ef-
ficiency and equity is not clear-cut, as revealed by the examples presented throughout.
Yet, the inequity index offers a quantitative approach to inequality, perhaps of interest
in games other than routing.

7The independence of irrelevant alternatives being perhaps the most controversial (Sen, 2018).
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Chapter 7

Coda

Decentralisation, in this thesis, is understood in contrast with the “master puppeteer”,
a social planner anxious to optimise some function of the costs in the population. Its
meaning thus implies agency of the players, whose rules of interactions are described
by the incentives of the game and their own self interest. A key tension exists between
efficiency, a state on first observation accessible only to the social planner, and decen-
tralisation, as exemplified by the price of anarchy. And yet, mechanisms presented
in this thesis, whether involving a central authority as in Chapter 3, lengthy commu-
nication and sophisticated punishments as in Chapter 4 or tolls as in Chapter 6, can
coordinate agents to achieve if not the social optimum, a state strictly better than the
worst equilibrium, in a decentralised fashion.

Does decentralisation always imply anarchy? These examples certainly argue that
it does unless anarchy is kept in check by some mechanisms. We turn our attention
to the rapidly growing field of economic systems governed by blockchains for a recent
instance. “Decentralisation” in blockchains is often understood as the censorship- and
fault-resistant properties of data replication supported by distributed consensus. In
plain English, it is easy enough for one agent to operate a server receiving and broad-
casting transactions, if a user trusts the operator to check for the correctness of the data
(e.g., two transactions cannot contradict each other) or to maintain access to it. A mali-
cious operator however might decide to corrupt (censor) incoming transactions for its
own benefit, or simply shut down as a result of random failure (fault).

By replicating data across a multitude of agents operating their own server, one can
prevent such faults, while opening another can of worms: who gets to decide which
data is to be written into the log? The Nakamoto consensus (Nakamoto, 2008) created
for Bitcoin relies on an elegant workaround to avoid confusion. A so-called miner
must solve a hard puzzle by brute force, and once it manages to find such a solution,
is allowed to disseminate a set of transactions (a block) to the other operators, who can
check for the validity of the set against previous transactions. Operators thus compete
to be the first to find such a block. The successful miner is rewarded with freshly minted
currency native to the protocol, and fees from transactions included in its block. The
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consensus protocol does not rule out that two miners or more may each provide a
distinct solution and transaction sets, but defines rules to cope with such situations, so
that one winner emerges in what is called the “canonical” chain.

Decentralisation is thus imperative for the correctness of the data. Failing a large
enough number of operators checking for the validity of the chain or competing in the
mining race, a single operator can corrupt history or become sole producer of blocks,
defeating the security desiderata of plurality. Since the launch of the first clients mining
and producing blocks in 2009, focus was given to maintain decentralisation as the value
(or at the very least, the amount of data) contained in the chain increased with each new
block.

However, the puzzle is set up in a way that new blocks appear on average every 10
minutes, regardless of the intensity of the competition among miners. This led to an
“arms race” of computing power, as the probability of successfully mining a new block
increases with the rate at which a miner can produce candidate solutions for the puzzle.
A consumer CPU may have been enough to engage in the race in the first few years,
but with price increases of Bitcoin, it became profitable to invest large resources in
first GPUs and later ASICs custom-built for mining. Amateur miners started to invest
in mining pools (Liu et al., 2018; Leonardos, Leonardos, and Piliouras, 2019), where
resources and rewards are shared, affording a more constant payoff rate, such that by
now most of the new block creation is done by one of a handful of these pools.

In a paradoxical way, decentralisation as understood in this thesis has lead to cen-
tralisation as understood in the context of blockchains (Arnosti and Weinberg, 2018;
Kwon et al., 2019). As agents followed their own incentives to profit from the sys-
tem, the dynamics naturally led to increased concentration in the hands of a few. A
useful reference here is Buterin (2017). The author notes the difference between ar-
chitectural decentralisation, referring to the number of physical computers running the
protocol, versus political decentralisation, or how many virtual entities actually control
these computers. Hence, “[a]rchitectural centralization often leads to political central-
ization, though not necessarily”. But in the case of the Bitcoin protocol and its miners,
“can we really say that the uncoordinated choice model is realistic when 90% of the Bit-
coin network’s mining power is well-coordinated enough to show up together at the
same conference?”, in reference to a picture of a panel of seven people.

We could refer to political decentralisation in blockchains as deconcentration, to em-
phasise that the property we look for is high entropy in the block producers rather
than agency (or anarchy) for the miners and participants to collude. The master pup-
peteer would, if it cared for deconcentration, limit the decentralisation of the agents
and against their incentives have them mine such that all participate without a clear
set of winners taking over. The arms race described previously finds striking parallels
with the issue of congestion and tragedy of the commons explored in this work, with a
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difference.
The master puppeteer also cares to maximise architectural decentralisation, as a

higher hash rate (i.e., total computer power devoted to solving the puzzle) in the net-
work provides more security by making it harder to corrupt the logically centralised data
(everyone has the same view of the transaction log), e.g., by launching a 51% attack.1

Hence, given a fixed budget of hashing power, we define the value of deconcentration as
the improvements to the distribution of mining power that a master puppeteer could
achieve. If a cost function measures the entropy in the distribution, as the Gini did for
instance in Chapter 6, the social optimum for a given hash rate is the entropy of the
uniform distribution among miners. A more thorough model is left for future work.

In Papadimitriou (2001), our opening reference, the author asked “Of which game
is TCP/IP congestion control the Nash equilibrium?”. This question, along with its
close relative, price of anarchy, spurred two decades of research into the equilibrium
properties of large systems of decentralised agents.

Our previous chapters show that this investigation is far from over. The quantita-
tive analysis of real systems from the viewpoint of PoA (Chapter 5 and 6) yields new
research directions towards a better understanding of fairness in such systems. New
systems such as blockchains, built on top of the very same Internet that launched the
original line of questioning, are direct descendents of the mechanisms that PoA helped
scrutinise under the algorithmic lens. Understanding the properties of these mecha-
nisms in practice, how they can be measured, which are their distributional effects and
clarifying the tenuous relationships between decentralisation, efficiency and inequality
hopefully provides a solid footing for the questions to come.

1A 51% attack takes place when a single miner controls a strict majority of the computing power, in
which case it can singlehandedly take control of the chain, since other miners cannot produce blocks faster.
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Appendix A

Appendix to Chapter 3

A.1 Experiment sessions

We report in the following table the distribution of rounds among our 8 experimental
sessions (including pilot).

TABLE A.1: Experiment details

Session date Number of rounds Rounds dropped
May 3rd, 2017 12 Pilot
June 6th, 2017 16 12
June 8th, 2017 16 2
June 15th, 2017 18 1
June 23rd, 2017 16 1
November 15th, 2017 15 1
March 21st, 2018 15 1
March 23rd, 2018 17 0
Total 125 12 (Pilot) + 18 (Dropped)
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Appendix B

Appendix to Chapter 5

B.1 Comparison of two routes from sensor measurements

The distance da,b is obtained with an estimation of the area enclosed by the polygon
formed by the concatenation of a and b. More formally, since a1 = b1 = Home and an =

bm = School, we consider the area enclosed by the polygon (a1, a2, . . . , an, bm−1, bm−2, . . . , b1).
The distance gets more precise as the number of data points logged along the trip in-
creases, although it is still possible to achieve good results for very sparse trips.

We need a criterion to decide whether the previously obtained area is sufficiently
small for the two sequences of coordinates to be considered consistent. To this end, we
construct the outer contour of each sequence a and b, defined by a polygon containing
the sequence of coordinates. Intuitively, we construct a band around the stream of loca-
tions, and the area of that band allows us to determine what constitutes an acceptable
deviation. We show in Figure B.1b a representation of the outer contour for a trip with
4 points. Given doa and dob , respective areas of the outer contour for a and b, we use the
following criterion to classify the routes a and b as consistent:

da,b <
doa + dob

2
⇒ a and b are consistent.

The average is taken to ensure that both trips are considered equally in our criterion.
Indeed, without the average, the algorithm may not be able to recognise a small devia-
tion if only the outer contour of the shortest path appears on the right-hand side.

A parameter w controls the width of the band. If we set w to a value that is too
large, we run the risk of incorrectly classifying different trips as consistent. On the
other hand, a w that is too small may mark as non-consistent trips that make use of the
same route. We have set the value ofw by creating negative examples, comparing a trip
with translated versions of the same sequence of coordinates. Visual analysis further
confirmed the validity of its choice.
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(A) (B)

FIGURE B.1: (A) Two trips (red and blue) are plotted, with endpoints in dark blue. The distance
between the trips is measured by the area of the darkened surface. (B) A four-point trip is
plotted in red. The outer contour is obtained by fixing a band width w.

B.2 Scenarios and speed profiles on road segments

TABLE B.1: Scenarios configuration

Scenario (speed km/h)
Road type Very Fast Fast Medium Slow Very Slow

Expressway 70 65 60 55 50
Semi Expressway 50 45 40 35 30
Arterial Road 40 35 30 25 20
Primary Road 30 25 20 15 10
Local Road 25 20 15 10 5
Expressway Slip Road 50 45 40 35 30
Slip Road 25 20 15 10 5
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